Journal Home > Volume 13 , Issue 5

Rare-earth (RE) based luminescent probes exhibit rich optical properties including upconversion and down-conversion luminescence spanning a broad spectral range from 300 to 3,000 nm, and have generated great scientific and practical interest from telecommunication to biological imaging. While upconversion nanoparticles have been investigated for decades, down-conversion luminescence of RE-based probes in the second near-infrared (NIR-II, 1,000-1,700 nm) window for in vivo biological imaging with sub-centimeter tissue penetration and micrometer image resolution has come into light only recently. In this review, we present recent progress on RE-based NIR-II probes for in vivo vasculature and molecular imaging with a focus on Er3+-based nanoparticles due to the down-conversion luminescence at the long-wavelength end of the NIR-II window (NIR-IIb, 1,500-1,700 nm). Imaging in NIR-IIb is superior to imaging with organic probes such as ICG and IRDye800 in the ~ 800 nm NIR range and the 1,000-1,300 nm short end of NIR-II range, owing to minimized light scattering and autofluorescence background. Doping by cerium and other ions and phase engineering of Er3+-based nanoparticles, combined with surface hydrophilic coating optimization can afford ultrabright, biocompatible NIR-IIb probe towards clinical translation for human use. The Nd3+-based probes with NIR-II emission at 1,050 and 1,330 nm are also discussed, including Nd3+ doped nanocrystals and Nd3+-organic ligand complexes. This review also points out future directions for further development of multi-functional RE NIR-II probes for biological imaging.


menu
Abstract
Full text
Outline
About this article

A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems

Show Author's information Yeteng ZhongHongjie Dai( )
Department of Chemistry, Stanford University, Stanford, California 94305, USA

Abstract

Rare-earth (RE) based luminescent probes exhibit rich optical properties including upconversion and down-conversion luminescence spanning a broad spectral range from 300 to 3,000 nm, and have generated great scientific and practical interest from telecommunication to biological imaging. While upconversion nanoparticles have been investigated for decades, down-conversion luminescence of RE-based probes in the second near-infrared (NIR-II, 1,000-1,700 nm) window for in vivo biological imaging with sub-centimeter tissue penetration and micrometer image resolution has come into light only recently. In this review, we present recent progress on RE-based NIR-II probes for in vivo vasculature and molecular imaging with a focus on Er3+-based nanoparticles due to the down-conversion luminescence at the long-wavelength end of the NIR-II window (NIR-IIb, 1,500-1,700 nm). Imaging in NIR-IIb is superior to imaging with organic probes such as ICG and IRDye800 in the ~ 800 nm NIR range and the 1,000-1,300 nm short end of NIR-II range, owing to minimized light scattering and autofluorescence background. Doping by cerium and other ions and phase engineering of Er3+-based nanoparticles, combined with surface hydrophilic coating optimization can afford ultrabright, biocompatible NIR-IIb probe towards clinical translation for human use. The Nd3+-based probes with NIR-II emission at 1,050 and 1,330 nm are also discussed, including Nd3+ doped nanocrystals and Nd3+-organic ligand complexes. This review also points out future directions for further development of multi-functional RE NIR-II probes for biological imaging.

Keywords: near-infrared, rare earth, down-conversion, biological imaging

References(102)

[1]
Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
[2]
Rao, J. H.; Dragulescu-Andrasi, A.; Yao, H. Q. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007, 18, 17-25.
[3]
Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841-1846.
[4]
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.
[5]
Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235-242.
[6]
Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 2017, 29, 1605497.
[7]
Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1,064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem., Int. Ed. 2018, 57, 7483-7487.
[8]
Sun, Y.; Ding, M. M.; Zeng, X. D.; Xiao, Y. L.; Wu, H. P.; Zhou, H.; Ding, B. B.; Qu, C. R.; Hou, W.; Er-bu, A. G. A. et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem. Sci. 2017, 8, 3489-3493.
[9]
Zhu, S. J.; Yang, Q. L.; Antaris, A. L.; Yue, J. Y.; Ma, Z. R.; Wang, H. S.; Huang, W.; Wan, H.; Wang, J.; Diao, S. et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window. Proc. Natl Acad. Sci. USA 2017, 114, 962-967.
[10]
Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723-730.
[11]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Del. Rev. 2013, 65, 1951-1963.
[12]
Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971-16974.
[13]
Robinson, J. T.; Hong, G. S.; Liang, Y. Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664-10669.
[14]
Bardhan, N. M.; Ghosh, D.; Belcher, A. M. Carbon nanotubes as in vivo bacterial probes. Nat. Commun. 2014, 5, 4918.
[15]
Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.
[16]
Tao, Z. M.; Hong, G. S.; Shinji, C.; Chen, C. X.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y. P.; Dai, H. J. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem., Int. Ed. 2013, 52, 13002-13006.
[17]
Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.
[18]
Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.
[19]
Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695-3702.
[20]
Liang, L.; Chen, N.; Jia, Y. Y.; Ma, Q. Q.; Wang, J.; Yuan, Q.; Tan, W. H. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019, 12, 1279-1292.
[21]
Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637-1647.
[22]
Ortgies, D. H.; García-Villalón, Á. L.; Granado, M.; Amor, S.; Rodríguez, E. M.; Santos, H. D. A.; Yao, J. K.; Rubio-Retama, J.; Jaque, D. Infrared fluorescence imaging of infarcted hearts with Ag2S nanodots. Nano Res. 2019, 12, 749-757.
[23]
Diao, S.; Blackburn, J. L.; Hong, G. S.; Antaris, A. L.; Chang, J. L.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. J. Fluorescence imaging in vivo at wavelengths beyond 1,500 nm. Angew. Chem., Int. Ed. 2015, 54, 14758-14762.
[24]
Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res. 2015, 8, 1932-1943.
[25]
Wang, Z. M.; Upputuri, P. K.; Zhen, X.; Zhang, R. C.; Jiang, Y. Y.; Ai, X. Z.; Zhang, Z. J.; Hu, M.; Meng, Z. Y.; Lu, Y. P. et al. pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Res. 2019, 12, 49-55.
[26]
Wan, H.; Ma, H. L.; Zhu, S. J.; Wang, F. F.; Tian, Y.; Ma, R.; Yang, Q. L.; Hu, Z. B.; Zhu, T.; Wang, W. Z. et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv. Funct. Mater. 2018, 28, 1804956.
[27]
Kamimura, M.; Matsumoto, T.; Suyari, S.; Umezawa, M.; Soga, K. Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF4 nanoparticles. J. Mater. Chem. B 2017, 5, 1917-1925.
[28]
Zhu, S. J.; Herraiz, S.; Yue, J. Y.; Zhang, M. X.; Wan, H.; Yang, Q. L.; Ma, Z. R.; Wang, Y.; He, J. H.; Antaris, A. L. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 2018, 30, 1705799.
[29]
Tao, Z. M.; Dang, X. N.; Huang, X.; Muzumdar, M. D.; Xu, E. S.; Bardhan, N. M.; Song, H. Q.; Qi, R. G.; Yu, Y. J.; Li, T. et al. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials 2017, 134, 202-215.
[30]
Wang, F. F.; Wan, H.; Ma, Z. R.; Zhong, Y. T.; Sun, Q. C.; Tian, Y.; Qu, L. Q.; Du, H.; Zhang, M. X.; Li, L. L. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 2019, 16, 545-552.
[31]
Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922-6932.
[32]
Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322-1331.
[33]
Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673-692.
[34]
Clough, T. J.; Jiang, L. J.; Wong, K. L.; Long, N. J. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun. 2019, 10, 1420.
[35]
Gapontsev, V. P.; Matitsin, S. M.; Isineev, A. A.; Kravchenko, V. B. Erbium glass lasers and their applications. Opt. Laser Technol. 1982, 14, 189-196.
[36]
Yan, Y. C.; Faber, A. J.; de Waal, H. Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J. Non-Cryst. Solids 1995, 181, 283-290.
[37]
Zhang, L.; Hu, H. F. The effect of OH- on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses. J. Phys. Chem. Solids 2002, 63, 575-579.
[38]
Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283-4374.
[39]
Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189-227.
[40]
Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
[41]
Boyn, R. 4f-4f luminescence of rare-earth centers in II-VI compounds. Phys. Status Solidi B 1988, 148, 11-47.
[42]
Weber, M. J. Radiative and multiphonon relaxation of rare-earth ions in Y2O3. Phys. Rev. 1968, 171, 283-291.
[43]
Saisudha, M. B.; Ramakrishna, J. Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses. Phys. Rev. B 1996, 53, 6186-6196.
[44]
Chen, G. Y.; Liu, H. C.; Liang, H. J.; Somesfalean, G.; Zhang, Z. G. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 2008, 112, 12030-12036.
[45]
Ofelt, G. S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511-520.
[46]
Judd, B. R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750-761.
[47]
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560-564.
[48]
Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015, 8, 3027-3034.
[49]
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.
[50]
Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ~ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6590-6595.
[51]
Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W. B.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 2016, 7, 12749.
[52]
Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.
[53]
Dang, X. G.; Gu, L.; Qi, J. F.; Correa, S.; Zhang, G. R.; Belcher, A. M.; Hammond, P. T. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 5179-5184.
[54]
Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849-20857.
[55]
Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643.
[56]
Li, D. G.; Qin, W. P.; Zhang, P.; Wang, L. L.; Lan, M.; Shi, P. B. Efficient luminescence enhancement of Gd2O3: Ln3+ (Ln = Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions. Opt. Mater. Express 2017, 7, 329-340.
[57]
Rahman, P.; Green, M. The synthesis of rare earthfluoride based nanoparticles. Nanoscale 2009, 1, 214-224.
[58]
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 2006, 45, 6661-6665.
[59]
Yin, W. Y.; Zhao, L. N.; Zhou, L. J.; Gu, Z. J.; Liu, X. X.; Tian, G.; Jin, S.; Yan, L.; Ren, W. L.; Xing, G. M. et al. Enhanced red emission from GdF3: Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem. -Eur. J. 2012, 18, 9239-9245.
[60]
Gu, Z. J.; Yan, L.; Tian, G.; Li, S. J.; Chai, Z. F.; Zhao, Y. L. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 2013, 25, 3758-3779.
[61]
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
[62]
Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929.
[63]
Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968-973.
[64]
Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.
[65]
Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.
[66]
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725-10815.
[67]
Huo, L. L.; Zhou, J. J.; Wu, R. Z.; Ren, J. F.; Zhang, S. J.; Zhang, J. J.; Xu, S. Q. Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing. Opt. Mater. Express 2016, 6, 1056-1064.
[68]
Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.
[69]
Xue, Z. L.; Zeng, S. J.; Hao, J. H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1,500 nm. Biomaterials 2018, 171, 153-163.
[70]
You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477-11484.
[71]
Li, Y. B.; Zeng, S. J.; Hao, J. H. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1,500 nm. ACS Nano 2019, 13, 248-259.
[72]
Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812-818.
[73]
Zhong, Y. T.; Rostami, I.; Wang, Z. H.; Dai, H. J.; Hu, Z. Y. Energy migration engineering of bright rare-earth upconversion nanoparticles for excitation by light-emitting diodes. Adv. Mater. 2015, 27, 6418-6422.
[74]
Zhong, Y. T.; Tian, G.; Gu, Z. J.; Yang, Y. J.; Gu, L.; Zhao, Y. L.; Ma, Y.; Yao, J. N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater. 2014, 26, 2831-2837.
[75]
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1,525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086-12090.
[76]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316-317.
[77]
Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941-946.
[78]
He, S.; Johnson, N. J. J.; Nguyen Huu, V. A.; Cory, E.; Huang, Y. R.; Sah, R. L.; Jokerst, J. V.; Almutairi, A. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano Lett. 2017, 17, 4873-4880.
[79]
Liu, L.; Li, X. M.; Fan, Y.; Wang, C. Y.; El-Toni, A. M.; Alhoshan, M. S.; Zhao, D. Y.; Zhang, F. Elemental migration in core/shell structured lanthanide doped nanoparticles. Chem. Mater. 2019, 31, 5608-5615.
[80]
Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275-3282.
[81]
Liu, Y. F.; Zhao, J.; Zhang, Y.; Zhang, H. F.; Zhang, Z. L.; Gao, H. P.; Mao, Y. L. Enhanced single-band red upconversion luminescence of α-NaErF4: Mn nanoparticles by a novel hollow-shell structure under multiple wavelength excitation. J. Alloys Compd. 2019, 810, 151761.
[82]
Wang, X.; Yakovliev, A.; Ohulchanskyy, T. Y.; Wu, L. N.; Zeng, S. J.; Han, X. J.; Qu, J. L.; Chen, G. Y. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging. Adv. Opt. Mater. 2018, 6, 1800690.
[83]
Fields, R. A.; Birnbaum, M.; Fincher, C. L. Highly efficient Nd: YVO4 diode-laser end-pumped laser. Appl. Phys. Lett. 1987, 51, 1885-1886.
[84]
Kane, T. J.; Byer, R. L. Monolithic, unidirectional single-mode Nd: YAG ring laser. Opt. Lett. 1985, 10, 65-67.
[85]
Ren, F.; Ding, L. H.; Liu, H. H.; Huang, Q.; Zhang, H.; Zhang, L. J.; Zeng, J. F.; Sun, Q.; Li, Z.; Gao, M. Y. Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials 2018, 175, 30-43.
[86]
Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 26674-26683.
[87]
Quintanilla, M.; Zhang, Y.; Liz-Marzán, L. M. Subtissue plasmonic heating monitored with CaF2: Nd3+, Y3+ nanothermometers in the second biological window. Chem. Mater. 2018, 30, 2819-2828.
[88]
Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U. et al. 1.3 μm emitting SrF2: Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 2015, 8, 649-665.
[89]
Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2014, 10, 1141-1154.
[90]
Qin, Q. S.; Zhang, P. Z.; Sun, L. D.; Shi, S.; Chen, N. X.; Dong, H.; Zheng, X. Y.; Li, L. M.; Yan, C. H. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. Nanoscale 2017, 9, 4660-4664.
[91]
Jiang, X. Y.; Cao, C.; Feng, W.; Li, F. Y. Nd3+-doped LiYF4 nanocrystals for bio-imaging in the second near-infrared window. J. Mater. Chem. B 2016, 4, 87-95.
[92]
Zhao, M. Y.; Wang, R.; Li, B. H.; Fan, Y.; Wu, Y. F.; Zhu, X. Y.; Zhang, F. Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew. Chem. 2019, 131, 2072-2076.
[93]
Li, X. L.; Jiang, M. Y.; Li, Y. B.; Xue, Z. L.; Zeng, S. J.; Liu, H. R. 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Mater. Sci. Eng. C 2019, 100, 260-268.
[94]
Xue, X. J.; Duan, Z. C.; Suzuki, T.; Tiwari, R. N.; Yoshimura, M.; Ohishi, Y. Luminescence properties of α-NaYF4: Nd3+ nanocrystals dispersed in liquid: Local field effect investigation. J. Phys. Chem. C 2012, 116, 22545-22551.
[95]
Zhou, J. J.; Shirahata, N.; Sun, H. T.; Ghosh, B.; Ogawara, M.; Teng, Y.; Zhou, S. F.; Sa Chu, R. G.; Fujii, M.; Qiu, J. R. Efficient dual-modal NIR-to-NIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging. J. Phys. Chem. Lett. 2013, 4, 402-408.
[96]
Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969-2977.
[97]
Wang, R.; Zhou, L.; Wang, W. X.; Li, X. M.; Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 2017, 8, 14702.
[98]
Crosby, G. A.; Whan, R. E.; Alire, R. M. Intramolecular energy transfer in rare earth chelates. role of the triplet state. J. Chem. Phys. 1961, 34, 743-748.
[99]
Crosby, G. A.; Whan, R. E.; Freeman, J. J. Spectroscopic studies of rare earth chelates. J. Phys. Chem. 1962, 66, 2493-2499.
[100]
Hofstraat, J. W.; Wolbers, M. P. O.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Werts, M. H. V.; Verhoeven, J. W. Near-IR luminescent rare earth ion-sensitizer complexes. J. Fluoresc. 1998, 8, 301-308.
[101]
Li, Y. B.; Li, X. L.; Xue, Z. L.; Jiang, M. Y.; Zeng, S. J.; Hao, J. H. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials 2018, 169, 35-44.
[102]
Gu, Y. Y.; Guo, Z. Y.; Yuan, W.; Kong, M. Y.; Liu, Y. L.; Liu, Y. T.; Gao, Y. L.; Feng, W.; Wang, F.; Zhou, J. J. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 2019, 13, 525-531.
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 November 2019
Revised: 28 January 2020
Accepted: 17 February 2020
Published: 25 March 2020
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Institutes of Health (grant no. DP1-NS-105737).

Return