Journal Home > Volume 13 , Issue 4

Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure. Despite the success of single atom catalyst synthesis, directly anchoring metal single atoms on three-dimensional (3D) macro support, which is promising to achieve the heterogenization of homogeneous catalysis, remains a challenge and a blank in this field. Herein, we successfully fabricate metal single atoms (Pd, Pt, Ru, Au) on porous carbon nitride/ reduced graphene oxide (C3N4/rGO) foam as highly efficient catalysts with convenient recyclability. C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion. The obtained Pd1/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction. Moreover, the Pd1/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1'-biphenyl through Suzuki-Miyaura coupling.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis

Show Author's information Ninghua Fu1Xiao Liang1Zhi Li1( )Wenxing Chen2Yu Wang3Lirong Zheng4Qinghua Zhang5Chen Chen1Dingsheng Wang1Qing Peng1Lin Gu5Yadong Li1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure. Despite the success of single atom catalyst synthesis, directly anchoring metal single atoms on three-dimensional (3D) macro support, which is promising to achieve the heterogenization of homogeneous catalysis, remains a challenge and a blank in this field. Herein, we successfully fabricate metal single atoms (Pd, Pt, Ru, Au) on porous carbon nitride/ reduced graphene oxide (C3N4/rGO) foam as highly efficient catalysts with convenient recyclability. C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion. The obtained Pd1/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction. Moreover, the Pd1/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1'-biphenyl through Suzuki-Miyaura coupling.

Keywords: carbon nitride, reduced graphene oxide, heterogenization of homogeneous catalysis, metal isolated single atoms, monolith catalyst

References(31)

[1]
Bhaduri, S.; Mukesh, D. Homogeneous Catalysis: Mechanisms and Industrial Applications, 2nd ed.; Wiley: Hoboken, New Jersey, 2014.
DOI
[2]
Shende, V. S.; Saptal, V. B.; Bhanage B. M. Recent advances utilized in the recycling of homogeneous catalysis. Chem. Rec. 2019, 19, 2022-2043.
[3]
Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044-1060.
[4]
Wu, Y. E.; Wang, D. S.; Li Y. D. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 2014, 43, 2112-2124.
[5]
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.
[6]
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[7]
Kyriakou, G; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-1212.
[8]
Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 128, 10800-10805.
[9]
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 129, 7041-7045.
[10]
Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem., Int. Ed. 2018, 57, 15316-15329.
[11]
Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H. Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.
[12]
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856-861.
[13]
Moulijn, J. A.; Kreutzer, M. T.; Nijhuis, T. A.; Kapteijn, F. Monolithic catalysts and reactors: High precision with low energy consumption. Adv. Catal. 2011, 54, 249-327.
[14]
Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702-707.
[15]
Zhao, C.; Yu, H. Z.; Wang, J.; Che, W.; Li, Z. J.; Yao, T.; Yan, W. S.; Chen, M.; Yang, J.; Wei, S. Q. et al. A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Mater. Chem. Front. 2018, 2, 1317-1322.
[16]
Tang, Z. H.; Shen, S. L.; Zhuang, J.; Wang, X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem., Int. Ed. 2010, 122, 4707-4711.
[17]
Santana, J. S.; Skrabalak, S. E. Continuous flow routes toward designer metal nanocatalysts. Adv. Energy Mater., in press, DOI: .
[18]
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-800.
[19]
Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.
[20]
Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[21]
Wang, J.; Li, Z. J.; Wu, Y. E.; Li, Y. D. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 2018, 30, 1801649.
[22]
Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-786.
[23]
Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631-635.
[24]
Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806-1854.
[25]
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
[26]
Roy, S.; Bauer, T.; Al-Dahhan, M.; Lehner, P.; Turek, T. Monoliths as multiphase reactors: A review. AIChE J. 2004, 50, 2918-2938.
[27]
Du, R.; Zhao, Q. C.; Zhang, N.; Zhang, J. Macroscopic carbon nanotube-based 3D monoliths. Small 2015, 11, 3263-3289.
[28]
Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144-4150.
[29]
Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S Batteries. Adv. Mater. 2016, 28, 1603-1609.
[30]
Li, C. W.; Qiu, L.; Zhang, B. Q.; Li, D.; Liu, C. Y. Robust vacuum-/ air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv. Mater. 2016, 28, 1510-1516.
[31]
Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623-1629.
File
12274_2020_2720_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 September 2019
Revised: 16 February 2020
Accepted: 17 February 2020
Published: 09 March 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0702003), the National Natural Science Foundation of China (No. 21890383 and 21971137) and Beijing Municipal Science & Technology Commission (No. Z191100007219003).

Return