Journal Home > Volume 14 , Issue 2

The separation of hexane isomers is of vital importance to produce high quality gasoline in the petrochemical industry. However, the similar vapor pressure and boiling point of hexane isomers bring great difficulties and challenges in the separation process. Sieving effect, which allowing smaller molecules pass through and preventing others, should be a powerful strategy to solve this problem by making good use of porous materials. Therefore, physical separation by metal-organic framework (MOF) materials appears and becomes a burgeoning separation technique in industry. Due to the weak interaction between hexane isomers with absorbents, it puts forward higher requirements for the accurate design of MOF materials with optimal pore system. To address this issue, a novel MOF [Zn9(tba)9(dabco)3]·12DMA·6MeOH (abbreviation: Zn9(tba)9(dabco)3; H2tba = 4-(1H-tetrazol-5-yl)-benzoic acid; dabco = 1,4-diazabicyclo[2.2.2]octane; DMA = N,N-dimethylacetamide) with bcu network has been designed and synthesized by reticular chemistry strategy. Benefiting from the pre-designed topology and suitable linear ligand H2tba and dabco, the structure of Zn9(tba)9(dabco)3 exhibits two types of channels with triangular-like and quadrilateral-like geometry. Zn9(tba)9(dabco)3 with appropriate channel size and shape displays potential selective adsorption capacity of vapor-phase hexane isomers through sieving effect. Moreover, outstanding gas adsorptive separation properties of Zn9(tba)9(dabco)3 could also be speculated by theoretical ideal adsorbed solution theory (IAST), suggesting Zn9(tba)9(dabco)3 can be regarded as a potential adsorbent material for purification natural gas. Breakthrough experiments show that Zn9(tba)9(dabco)3 is capable of discriminating all four hexane isomers at 298 K, and the corresponding research octane number (RON) of the eluted mixture closes to 95, which is higher than the standard for industrially refined hexane blends (about 83). We speculate that sieving effect and diffusion are a synergetic contributory factor in their elution dynamics, which may be ascribed to temperature-dependent interaction between pore aperture and each isomer. This work presents a typical example for design of efficient MOF absorbents by reticular chemistry strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Separation of hexane isomers by introducing "triangular-like and quadrilateral-like channels" in a bcu-type metal-organic framework

Show Author's information Dongmei Wang1,2Xinglong Dong3Yu Han3,( )Yunling Liu1,( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, Jinhua 321004, China
Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

Abstract

The separation of hexane isomers is of vital importance to produce high quality gasoline in the petrochemical industry. However, the similar vapor pressure and boiling point of hexane isomers bring great difficulties and challenges in the separation process. Sieving effect, which allowing smaller molecules pass through and preventing others, should be a powerful strategy to solve this problem by making good use of porous materials. Therefore, physical separation by metal-organic framework (MOF) materials appears and becomes a burgeoning separation technique in industry. Due to the weak interaction between hexane isomers with absorbents, it puts forward higher requirements for the accurate design of MOF materials with optimal pore system. To address this issue, a novel MOF [Zn9(tba)9(dabco)3]·12DMA·6MeOH (abbreviation: Zn9(tba)9(dabco)3; H2tba = 4-(1H-tetrazol-5-yl)-benzoic acid; dabco = 1,4-diazabicyclo[2.2.2]octane; DMA = N,N-dimethylacetamide) with bcu network has been designed and synthesized by reticular chemistry strategy. Benefiting from the pre-designed topology and suitable linear ligand H2tba and dabco, the structure of Zn9(tba)9(dabco)3 exhibits two types of channels with triangular-like and quadrilateral-like geometry. Zn9(tba)9(dabco)3 with appropriate channel size and shape displays potential selective adsorption capacity of vapor-phase hexane isomers through sieving effect. Moreover, outstanding gas adsorptive separation properties of Zn9(tba)9(dabco)3 could also be speculated by theoretical ideal adsorbed solution theory (IAST), suggesting Zn9(tba)9(dabco)3 can be regarded as a potential adsorbent material for purification natural gas. Breakthrough experiments show that Zn9(tba)9(dabco)3 is capable of discriminating all four hexane isomers at 298 K, and the corresponding research octane number (RON) of the eluted mixture closes to 95, which is higher than the standard for industrially refined hexane blends (about 83). We speculate that sieving effect and diffusion are a synergetic contributory factor in their elution dynamics, which may be ascribed to temperature-dependent interaction between pore aperture and each isomer. This work presents a typical example for design of efficient MOF absorbents by reticular chemistry strategy.

Keywords: bcu-type metal-organic framework, channel characteristics, sieving effect, hexane isomers, adsorptive separation

References(51)

[1]
Z. R. Herm,; E. D. Bloch,; J. R. Long, Hydrocarbon separations in metal-organic frameworks. Chem. Mater. 2014, 26, 323-338.
[2]
W. G. Cui,; T. L. Hu,; X. H. Bu, Metal-organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 2020, 32, 1806445.
[3]
L. Peng,; Q. Zhu,; P. L. Wu,; X. J. Wu,; W. Q. Cai, High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations. Phys. Chem. Chem. Phys. 2019, 21, 8508-8516.
[4]
H. Wang,; J. Li, Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968-1978.
[5]
Y. G. Chung,; P. Bai,; M. Haranczyk,; K. T. Leperi,; P. Li,; H. D. Zhang,; T. C. Wang,; T. Duerinck,; F. Q. You,; J. T. Hupp, et al. Computational screening of nanoporous materials for hexane and heptane isomer separation. Chem. Mater. 2017, 29, 6315-6328.
[6]
R. Krishna,; B. Smit,; S. Calero, Entropy effects during sorption of alkanes in zeolites. Chem. Soc. Rev. 2002, 31, 185-194.
[7]
R. V. Jasra,; S. G. T. Bhat, Adsorptive bulk separations by zeolite molecular sieves. Sep. Sci. Technol. 1988, 23, 945-989.
[8]
D. X. Xue,; Q. Wang,; J. F. Bai, Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 2019, 378, 2-16.
[9]
R. B. Lin,; S. C. Xiang,; H. B. Xing,; W. Zhou,; B. L. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87-103.
[10]
K. Adil,; Y. Belmabkhout,; R. S. Pillai,; A. Cadiau,; P. M. Bhatt,; A. H. Assen,; G. Maurin,; M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402-3430.
[11]
L. Jiao,; J. Y. R. Seow,; W. S. Skinner,; Z. U. Wang,; H. L. Jiang, Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43-68.
[12]
A. Cadiau,; K. Adil,; P. M. Bhatt,; Y. Belmabkhout,; M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137-140.
[13]
J. Y. Pei,; K. Shao,; L. Zhang,; H. M. Wen,; B. Li,; G. D. Qian, Current status of microporous metal-organic frameworks for hydrocarbon separations. Top. Curr. Chem. 2019, 377, 33.
[14]
L. B. Li,; R. B. Lin,; R. Krishna,; H. Li,; S. C. Xiang,; H. Wu,; J. P. Li,; W. Zhou,; B. L. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 2018, 362, 443-446.
[15]
X. Zhao,; Y. X. Wang,; D.-S. Li,; X. H. Bu,; P. Y. Feng, Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.
[16]
K. Vellingiri,; P. Kumar,; K. H. Kim, Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Res. 2016, 9, 3181-3208.
[17]
P. Q. Liao,; W. X. Zhang,; J. P. Zhang,; X. M. Chen, Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015, 6, 8697.
[18]
B. Liu,; S. Yao,; X. Y. Liu,; X. Li,; R. Krishna,; G. H. Li,; Q. S. Huo,; Y. L. Liu, Two analogous polyhedron-based MOFs with high density of Lewis basic sites and open metal sites: Significant CO2 capture and gas selectivity performance. ACS Appl. Mater. Interfaces 2017, 9, 32820-32828.
[19]
D. M. Wang,; B. Liu,; S. Yao,; T. Wang,; G. H. Li,; Q. S. Huo,; Y. L. Liu, A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons. Chem. Commun. 2015, 51, 15287-15289.
[20]
B. Y. Li,; M. Chrzanowski,; Y. M. Zhang,; S. Q. Ma, Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 2016, 307, 106-129.
[21]
J. R. Li,; J. M. Yu,; W. G. Lu,; L. B. Sun,; J. Sculley,; P. B. Balbuena,; H. C. Zhou, Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun. 2013, 4, 1538.
[22]
Z. B. Bao,; J. W. Wang,; Z. G. Zhang,; H. B. Xing,; Q. W. Yang,; Y. W. Yang,; H. Wu,; R. Krishna,; W. Zhou,; B. L. Chen, et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 16020-16025.
[23]
R. B. Lin,; L. B. Li,; H. L. Zhou,; H. Wu,; C. H. He,; S. Li,; R. Krishna,; J. P. Li,; W. Zhou,; B. L. Chen, Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128-1133.
[24]
X. L. Cui,; K. J. Chen,; H. B. Xing,; Q. W. Yang,; R. Krishna,; Z. B. Bao,; H. Wu,; W. Zhou,; X. L. Dong,; Y. Han, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141-144.
[25]
L. B. Li,; H. M. Wen,; C. H. He,; R. B. Lin,; R. Krishna,; H. Wu,; W. Zhou,; J. P. Li,; B. Li,; B. L. Chen, A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew. Chem. 2018, 130, 15403-15408.
[26]
H. Wang,; X. L. Dong,; J. Z. Lin,; S. J. Teat,; S. Jensen,; J. Cure,; E. V. Alexandrov,; Q. B. Xia,; K. Tan,; Q. N. Wang, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 2018, 9, 1745.
[27]
H. Wang,; X. L. Dong,; E. Velasco,; D. H. Olson,; Y. Han,; J. Li, One-of-a-kind: A microporous metal-organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ. Sci. 2018, 11, 1226-1231.
[28]
D. F. Lv,; H. Wang,; Y. W. Chen,; F. Xu,; R. F. Shi,; Z. W. Liu,; X. L. Wang,; S. J. Teat,; Q. B. Xia,; Z. Li, et al. Iron-based metal-organic framework with hydrophobic quadrilateral channels for highly selective separation of hexane isomers. ACS Appl. Mater. Interfaces 2018, 10, 6031-6038.
[29]
L. Chen,; S. Yuan,; J. F. Qian,; W. Fan,; M. Y. He,; Q. Chen,; Z. H. Zhang, Effective adsorption separation of n-hexane/2-methylpentane in facilely synthesized zeolitic imidazolate frameworks ZIF-8 and ZIF-69. Ind. Eng. Chem. Res. 2016, 55, 10751-10757.
[30]
P. A. P. Mendes,; P. Horcajada,; S. Rives,; H. Ren,; A. E. Rodrigues,; T. Devic,; E. Magnier,; P. Trens,; H. Jobic,; J. Ollivier, et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework. Adv. Funct. Mater. 2014, 24, 7666-7673.
[31]
B. Bozbiyik,; J. Lannoeye,; D. E. De Vos,; G. V. Baron,; J. F. M. Denayer, Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2016, 18, 3294-3301.
[32]
L. H. Wee,; M. Meledina,; S. Turner,; G. Van Tendeloo,; K. Zhang,; L. M. Rodriguez-Albelo,; A. Masala,; S. Bordiga,; J. W. Jiang,; J. A. R. Navarro, et al. 1D-2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc. 2017, 139, 819-828.
[33]
B. L. Chen,; C. D. Liang,; J. Yang,; D. S. Contreras,; Y. L. Clancy,; E. B. Lobkovsky,; O. M. Yaghi,; S. Dai, A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem., Int. Ed. 2006, 45, 1390-1393.
[34]
P. S. Bárcia,; F. Zapata,; J. A. C. Silva,; A. E. Rodrigues,; B. L. Chen, Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. J. Phys. Chem. B 2007, 111, 6101-6103.
[35]
N. A. Ramsahye,; P. Trens,; C. Shepherd,; P. Gonzalez,; T. K. Trung,; F. Ragon,; C. Serre, The effect of pore shape on hydrocarbon selectivity on UiO-66(Zr), HKUST-1 and MIL-125(Ti) metal organic frameworks: Insights from molecular simulations and chromatography. Microporous Mesoporous Mater. 2014, 189, 222-231.
[36]
V. A. Solanki,; B. Borah, Ranking of metal-organic frameworks (MOFs) for separation of hexane isomers by selective adsorption. Ind. Eng. Chem. Res. 2019, 58, 20047-20065.
[37]
Z. J. Chen,; Z. Thiam,; A. Shkurenko,; L. J. Weselinski,; K. Adil,; H. Jiang,; D. Alezi,; A. H. Assen,; M. O’Keeffe,; M. Eddaoudi, Enriching the reticular chemistry repertoire with minimal edge-transitive related nets: Access to highly coordinated metal-organic frameworks based on double six-membered rings as net-coded building units. J. Am. Chem. Soc. 2019, 141, 20480-20489.
[38]
Z. J. Chen,; S. L. Hanna,; L. R. Redfern,; D. Alezi,; T. Islamoglu,; O. K. Farha, Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 2019, 386, 32-49.
[39]
V. Guillerm,; D. Maspoch, Geometry mismatch and reticular chemistry: Strategies to assemble metal-organic frameworks with non-default topologies. J. Am. Chem. Soc. 2019, 141, 16517-16538.
[40]
Z. R. Herm,; B. M. Wiers,; J. A. Mason,; J. M. Van Baten,; M. R. Hudson,; P. Zajdel,; C. M. Brown,; N. Masciocchi,; R. Krishna,; J. R. Long, Separation of hexane isomers in a metal-organic framework with triangular channels. Science 2013, 340, 960-964.
[41]
G. Sheldrick, Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 467-473.
[42]
G. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.
[43]
G. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
[44]
V. A. Blatov,; A. P. Shevchenko,; D. M. Proserpio, Applied topological analysis of crystal structures with the program package toposPro. Cryst. Growth Des. 2014, 14, 3576-3586.
[45]
D. M. Wang,; Z. H. Liu,; L. L. Xu,; C. X. Li,; D. A. Zhao,; G. W. Ge,; Z. L. Wang,; J. Lin, A heterometallic metal-organic framework based on multi-nuclear clusters exhibiting high stability and selective gas adsorption. Dalton Trans. 2019, 48, 278-284.
[46]
J. Q. Yuan,; J. T. Li,; S. T. Che,; G. H. Li,; X. Y. Liu,; X. D. Sun,; L. F. Zou,; L. R. Zhang,; Y. L. Liu, Two unique copper cluster-based metal-organic frameworks with high performance for CO2 adsorption and separation. Inorg. Chem. Front. 2019, 6, 556-561.
[47]
Y. B. Zhang,; L. F. Yang,; L. Y. Wang,; S. Duttwyler,; H. B. Xing, A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem., Int. Ed. 2019, 58, 8145-8150.
[48]
S. Gao,; C. G. Morris,; Z. Z. Lu,; Y. Yan,; H. G. W. Godfrey,; C. Murray,; C. C. Tang,; K. M. Thomas,; S. H. Yang,; M. Schröder, Selective hysteretic sorption of light hydrocarbons in a flexible metal-organic framework material. Chem. Mater. 2016, 28, 2331-2340.
[49]
Y. P. He,; Y. X. Tan,; J. Zhang, Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons. Chem. Commun. 2013, 49, 11323-11325.
[50]
B. Liu,; S. Yao,; C. Shi,; G. H. Li,; Q. S. Huo,; Y. L. Liu, Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks. Chem. Commun. 2016, 52, 3223-3226.
[51]
Y. B. He,; Z. J. Zhang,; S. C. Xiang,; F. R. Fronczek,; R. Krishna,; B. L. Chen, A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493-6495.
File
12274_2020_2714_MOESM1_ESM.pdf (2.5 MB)
12274_2020_2714_MOESM2_ESM.pdf (216.8 KB)
12274_2020_2714_MOESM3_ESM.cif (389.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 January 2020
Accepted: 12 February 2020
Published: 09 March 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 21771078 and 21621001), the 111 Project (No. B17020), the National Key Research and Development Program of China (No. 2016YFB0701100), and Zhejiang Provincial Natural Science Foundation of China (No. LQ18B010002).

Return