Journal Home > Volume 14 , Issue 2

We report a microporous aluminum-based metal-organic framework (MOF), BUT-22 for high methane (CH4), hydrogen (H2), and carbon dioxide (CO2) storage. At 296 K and 80 bar, BUT-22 exhibits a high gravimetric CH4 storage capacity of 530 cm3 (STP)/g (0.379 g/g). BUT-22 also has a high gravimetric H2 storage capacity of 12 wt.% at 100 bar and 77 K. In addition, the CO2 adsorption studies revealed that BUT-22 exhibits a high absolute gravimetric CO2 uptake of 1.7 g/g at 296 K and 40 bar.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage

Show Author's information Bin Wang1,2Xin Zhang2Hongliang Huang4Zhangjing Zhang1Taner Yildirim3Wei Zhou3Shengchang Xiang1,( )Banglin Chen2,( )
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China

Abstract

We report a microporous aluminum-based metal-organic framework (MOF), BUT-22 for high methane (CH4), hydrogen (H2), and carbon dioxide (CO2) storage. At 296 K and 80 bar, BUT-22 exhibits a high gravimetric CH4 storage capacity of 530 cm3 (STP)/g (0.379 g/g). BUT-22 also has a high gravimetric H2 storage capacity of 12 wt.% at 100 bar and 77 K. In addition, the CO2 adsorption studies revealed that BUT-22 exhibits a high absolute gravimetric CO2 uptake of 1.7 g/g at 296 K and 40 bar.

Keywords: carbon dioxide, hydrogen, metal-organic frameworks (MOFs), gas storage, methane

References(41)

[1]
Key energy statistics of China, International Energy Agency (IEA) [Online]. https://www.iea.org/countries/china (accessed Oct 2019).
[2]
M. Wang, Fuel choices for fuel-cell vehicles: Well-to-wheels energy and emission impacts. J. Power Sources 2002, 112, 307-321.
[3]
ARPA-E MOVE Program Overview [Online]. http://arpa-e.energy.gov/sites/default/files/documents/files/MOVE_ProgramOverview.pdf (accessed Aug 4, 2019).
[4]
D. M. D'Alessandro,; B. Smit,; J. R. Long, Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058-6082.
[5]
R. S. Haszeldine, Carbon capture and storage: How green can black be? Science 2009, 325, 1647-1652.
[6]
M. P. Suh,; H. J. Park,; T. K. Prasad,; D. W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782-835.
[7]
K. Sumida,; D. L. Rogow,; J. A. Mason,; T. M. McDonald,; E. D. Bloch,; Z. R. Herm,; T. H. Bae,; J. R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724-781.
[8]
Y. B. He,; W. Zhou,; G. D. Qian,; B. L. Chen, Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
[9]
T. A. Makal,; J. R. Li,; W. G. Lu,; H. C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761-7779.
[10]
B. Li,; H. M. Wen,; W. Zhou,; J. Q. Xu,; B. L. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 2016, 1, 557-580.
[11]
L. Y. Bai,; B. B. Tu,; Y. Qi,; Q. Gao,; D. Liu,; Z. Z. Liu,; L. Z. Zhao,; Q. W. Li,; Y. L. Zhao, Enhanced performance in gas adsorption and li ion batteries by docking Li+ in a crown ether-based metal-organic framework. Chem. Commun. 2016, 52, 3003-3006.
[12]
Y. B. Zhang,; H. Furukawa,; N. Ko,; W. X. Nie,; H. J. Park,; S. Okajima,; K. E. Cordova,; H. X. Deng,; J. Kim,; O. M. Yaghi, Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. J. Am. Chem. Soc. 2015, 137, 2641-2650.
[13]
J. M. Lin,; C. T. He,; Y. Liu,; P. Q. Liao,; D. D. Zhou,; J. P. Zhang,; X. M. Chen, A metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem., Int. Ed. 2016, 55, 4674-4678.
[14]
J. D. Pang,; F. L. Jiang,; M. Y. Wu,; C. P. Liu,; K. Z. Su,; W. G. Lu,; D. Q. Yuan,; M. C. Hong, A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575.
[15]
Y. N. Si,; X. He,; J. Jiang,; Z. M. Duan,; W. J. Wang,; D. Q. Yuan, Highly effective H2/D2 separation in a stable cu-based metal-organic framework. Nano Res., in press, .
[16]
Y. Peng,; V. Krungleviciute,; I. Eryazici,; J. T. Hupp,; O. K. Farha,; T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887-11894.
[17]
S. S. Y. Chui,; S. M. F. Lo,; J. P. H. Charmant,; A. G. Orpen,; I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
[18]
B. Li,; H. M. Wen,; H. L. Wang,; H. Wu,; M. Tyagi,; T. Yildirim,; W. Zhou,; B. L. Chen, A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 2014, 136, 6207-6210.
[19]
A. Ahmed,; S. Seth,; J. Purewal,; A. G. Wong-Foy,; M. Veenstra,; A. J. Matzger,; D. J. Siegel, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. 2019, 10, 1568.
[20]
H. L. Li,; M. Eddaoudi,; M. O'Keeffe,; O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
[21]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. Ö. Yazaydin,; R. Q. Snurr,; M. O'Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[22]
N. C. Burtch,; H. Jasuja,; K. S. Walton, Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-10612.
[23]
J. Canivet,; A. Fateeva,; Y. M. Guo,; B. Coasne,; D. Farrusseng, Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594-5617.
[24]
Y. Bai,; Y. B. Dou,; L. H. Xie,; W. Rutledge,; J. R. Li,; H. C. Zhou, Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
[25]
G. Férey,; C. Mellot-Draznieks,; C. Serre,; F. Millange,; J. Dutour,; S. Surblé,; I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2042.
[26]
J. H. Wang,; Y. Zhang,; M. Li,; S. Yan,; D. Li,; X. M. Zhang, Solvent-assisted metal metathesis: A highly efficient and versatile route towards synthetically demanding chromium metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 6478-6482.
[27]
D. Alezi,; Y. Belmabkhout,; M. Suyetin,; P. M. Bhatt,; L. J. Weselinski,; V. Solovyeva,; K. Adil,; I. Spanopoulos,; P. N. Trikalitis,; A. H. Emwas, et al. MOF crystal chemistry paving the way to gas storage needs: Aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137, 13308-13318.
[28]
F. Gándara,; H. Furukawa,; S. Lee,; O. M. Yaghi, High methane storage capacity in aluminum metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 5271-5274.
[29]
B. Wang,; Q. Yang,; C. Guo,; Y. X. Sun,; L. H. Xie,; J. R. Li, Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl. Mater. Interfaces 2017, 9, 10286-10295.
[30]
B. Wang,; J. H. Liu,; J. M. Yu,; J. Lv,; Css. Dong,; J. R. Li, Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J. Hazard. Mater. 2020, 382, 121018.
[31]
W. Zhou,; H. Wu,; M. R. Hartman,; T. Yildirim, Hydrogen and methane adsorption in metal-organic frameworks: A high-pressure volumetric study. J. Phys. Chem. C 2007, 111, 16131-16137.
[32]
A. L. Spek, Single-crystal structure validation with the program platon. J. Appl. Crystallogr. 2003, 36, 7-13.
[33]
Y. B. He,; W. Zhou,; T. Yildirim,; B. L. Chen, A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy Environ. Sci. 2013, 6, 2735-2744.
[34]
C. X. Chen,; Z. W. Wei,; J. J. Jiang,; S. P. Zheng,; H. P. Wang,; Q. F. Qiu,; C. C. Cao,; D. Fenske,; C. Y. Su, Dynamic spacer installation for multirole metal-organic frameworks: A new direction toward multifunctional mofs achieving ultrahigh methane storage working capacity. J. Am. Chem. Soc. 2017, 139, 6034-6037.
[35]
H. M. Wen,; B. Li,; L. B. Li,; R. B. Lin,; W. Zhou,; G. D. Qian,; B. L. Chen, A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv. Mater. 2018, 30, 1704792.
[36]
J. C. Jiang,; H. Furukawa,; Y. B. Zhang,; O. M. Yaghi, High methane storage working capacity in metal-organic frameworks with acrylate links. J. Am. Chem. Soc. 2016, 138, 10244-10251.
[37]
J. A. Mason,; M. Veenstra,; J. R. Long, Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32-51.
[38]
Y. Yan,; D. I. Kolokolov,; I. Da Silva,; A. G. Stepanov,; A. J. Blake,; A. Dailly,; P. Manuel,; C. C. Tang,; S. H. Yang,; M. Schröder, Porous metal-organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage. J. Am. Chem. Soc. 2017, 139, 13349-13360.
[39]
DOE technical targets for onboard hydrogen storage for light-duty vehicles [Online]. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed May 2017).
[40]
D. Siegel,; B. Hardy,; H Team,. Engineering an adsorbent-based hydrogen storage system: What have we learned? [Online]. https://energy.Gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.Pdf (accessed Jun 2017).
[41]
D. A. Gómez-Gualdrón,; T. C. Wang,; P. García-Holley,; R. M. Sawelewa,; E. Argueta,; R. Q. Snurr,; J. T. Hupp,; T. Yildirim,; O. K. Farha, Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 33419-33428.
File
12274_2020_2713_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2020
Accepted: 11 February 2020
Published: 09 March 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21971038, 21975044, 21805039, 21673039, and 573042), the Fujian Science and Technology Department (Nos. 2019H6012 and 2018J07001), the China Postdoctoral Science Foundation (No. 2018M642556), and the Welch Foundation (No. AX-1730).

Return