[2]
M. Wang, Fuel choices for fuel-cell vehicles: Well-to-wheels energy and emission impacts. J. Power Sources 2002, 112, 307-321.
[4]
D. M. D'Alessandro,; B. Smit,; J. R. Long, Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058-6082.
[5]
R. S. Haszeldine, Carbon capture and storage: How green can black be? Science 2009, 325, 1647-1652.
[6]
M. P. Suh,; H. J. Park,; T. K. Prasad,; D. W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782-835.
[7]
K. Sumida,; D. L. Rogow,; J. A. Mason,; T. M. McDonald,; E. D. Bloch,; Z. R. Herm,; T. H. Bae,; J. R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724-781.
[8]
Y. B. He,; W. Zhou,; G. D. Qian,; B. L. Chen, Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
[9]
T. A. Makal,; J. R. Li,; W. G. Lu,; H. C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761-7779.
[10]
B. Li,; H. M. Wen,; W. Zhou,; J. Q. Xu,; B. L. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 2016, 1, 557-580.
[11]
L. Y. Bai,; B. B. Tu,; Y. Qi,; Q. Gao,; D. Liu,; Z. Z. Liu,; L. Z. Zhao,; Q. W. Li,; Y. L. Zhao, Enhanced performance in gas adsorption and li ion batteries by docking Li+ in a crown ether-based metal-organic framework. Chem. Commun. 2016, 52, 3003-3006.
[12]
Y. B. Zhang,; H. Furukawa,; N. Ko,; W. X. Nie,; H. J. Park,; S. Okajima,; K. E. Cordova,; H. X. Deng,; J. Kim,; O. M. Yaghi, Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. J. Am. Chem. Soc. 2015, 137, 2641-2650.
[13]
J. M. Lin,; C. T. He,; Y. Liu,; P. Q. Liao,; D. D. Zhou,; J. P. Zhang,; X. M. Chen, A metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem., Int. Ed. 2016, 55, 4674-4678.
[14]
J. D. Pang,; F. L. Jiang,; M. Y. Wu,; C. P. Liu,; K. Z. Su,; W. G. Lu,; D. Q. Yuan,; M. C. Hong, A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575.
[15]
Y. N. Si,; X. He,; J. Jiang,; Z. M. Duan,; W. J. Wang,; D. Q. Yuan, Highly effective H2/D2 separation in a stable cu-based metal-organic framework. Nano Res., in press, .
[16]
Y. Peng,; V. Krungleviciute,; I. Eryazici,; J. T. Hupp,; O. K. Farha,; T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887-11894.
[17]
S. S. Y. Chui,; S. M. F. Lo,; J. P. H. Charmant,; A. G. Orpen,; I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
[18]
B. Li,; H. M. Wen,; H. L. Wang,; H. Wu,; M. Tyagi,; T. Yildirim,; W. Zhou,; B. L. Chen, A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 2014, 136, 6207-6210.
[19]
A. Ahmed,; S. Seth,; J. Purewal,; A. G. Wong-Foy,; M. Veenstra,; A. J. Matzger,; D. J. Siegel, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. 2019, 10, 1568.
[20]
H. L. Li,; M. Eddaoudi,; M. O'Keeffe,; O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
[21]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. Ö. Yazaydin,; R. Q. Snurr,; M. O'Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[22]
N. C. Burtch,; H. Jasuja,; K. S. Walton, Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-10612.
[23]
J. Canivet,; A. Fateeva,; Y. M. Guo,; B. Coasne,; D. Farrusseng, Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594-5617.
[24]
Y. Bai,; Y. B. Dou,; L. H. Xie,; W. Rutledge,; J. R. Li,; H. C. Zhou, Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
[25]
G. Férey,; C. Mellot-Draznieks,; C. Serre,; F. Millange,; J. Dutour,; S. Surblé,; I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2042.
[26]
J. H. Wang,; Y. Zhang,; M. Li,; S. Yan,; D. Li,; X. M. Zhang, Solvent-assisted metal metathesis: A highly efficient and versatile route towards synthetically demanding chromium metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 6478-6482.
[27]
D. Alezi,; Y. Belmabkhout,; M. Suyetin,; P. M. Bhatt,; L. J. Weselinski,; V. Solovyeva,; K. Adil,; I. Spanopoulos,; P. N. Trikalitis,; A. H. Emwas, et al. MOF crystal chemistry paving the way to gas storage needs: Aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137, 13308-13318.
[28]
F. Gándara,; H. Furukawa,; S. Lee,; O. M. Yaghi, High methane storage capacity in aluminum metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 5271-5274.
[29]
B. Wang,; Q. Yang,; C. Guo,; Y. X. Sun,; L. H. Xie,; J. R. Li, Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl. Mater. Interfaces 2017, 9, 10286-10295.
[30]
B. Wang,; J. H. Liu,; J. M. Yu,; J. Lv,; Css. Dong,; J. R. Li, Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J. Hazard. Mater. 2020, 382, 121018.
[31]
W. Zhou,; H. Wu,; M. R. Hartman,; T. Yildirim, Hydrogen and methane adsorption in metal-organic frameworks: A high-pressure volumetric study. J. Phys. Chem. C 2007, 111, 16131-16137.
[32]
A. L. Spek, Single-crystal structure validation with the program platon. J. Appl. Crystallogr. 2003, 36, 7-13.
[33]
Y. B. He,; W. Zhou,; T. Yildirim,; B. L. Chen, A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy Environ. Sci. 2013, 6, 2735-2744.
[34]
C. X. Chen,; Z. W. Wei,; J. J. Jiang,; S. P. Zheng,; H. P. Wang,; Q. F. Qiu,; C. C. Cao,; D. Fenske,; C. Y. Su, Dynamic spacer installation for multirole metal-organic frameworks: A new direction toward multifunctional mofs achieving ultrahigh methane storage working capacity. J. Am. Chem. Soc. 2017, 139, 6034-6037.
[35]
H. M. Wen,; B. Li,; L. B. Li,; R. B. Lin,; W. Zhou,; G. D. Qian,; B. L. Chen, A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv. Mater. 2018, 30, 1704792.
[36]
J. C. Jiang,; H. Furukawa,; Y. B. Zhang,; O. M. Yaghi, High methane storage working capacity in metal-organic frameworks with acrylate links. J. Am. Chem. Soc. 2016, 138, 10244-10251.
[37]
J. A. Mason,; M. Veenstra,; J. R. Long, Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32-51.
[38]
Y. Yan,; D. I. Kolokolov,; I. Da Silva,; A. G. Stepanov,; A. J. Blake,; A. Dailly,; P. Manuel,; C. C. Tang,; S. H. Yang,; M. Schröder, Porous metal-organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage. J. Am. Chem. Soc. 2017, 139, 13349-13360.
[41]
D. A. Gómez-Gualdrón,; T. C. Wang,; P. García-Holley,; R. M. Sawelewa,; E. Argueta,; R. Q. Snurr,; J. T. Hupp,; T. Yildirim,; O. K. Farha, Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 33419-33428.