Journal Home > Volume 13 , Issue 3

Room temperature phosphorescence (RTP) materials show potential applications in information security and optoelectronic devices, but it is still a challenge to achieve RTP in organic materials under water ambient due to the unstable property of triplet states. Herein, water-induced RTP has been demonstrated in the organic microrod (OMR). Noting that the RTP intensity of the as-prepared OMR is greatly enhanced when water is introduced, and the reason for the enhancement can be attributed to the formation of hydrogen-bonded networks inside the OMR. The hydrogen-bonded networks can confine the molecular motion effectively, leading to the stability of triplet states; thus the lifetime of the OMR can reach 1.64 s after introducing water. By virtue of the long lifetime of the OMR in the presence of water, multilevel data encryption based on the OMR has been demonstrated.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks

Show Author's information Ya-Chuan Liang1,§Yuan Shang2,§Kai-Kai Liu1( )Zhen Liu3Wen-Jie Wu1Qian Liu1Qi Zhao1Xue-Ying Wu1Lin Dong1Chong-Xin Shan1( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
Super Computer Center, Smart City Institute, Zhengzhou University, Zhengzhou 4500052, China
The college of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 4500052, China

§ Ya-Chuan Liang and Yuan Shang contributed equally to this work.

Abstract

Room temperature phosphorescence (RTP) materials show potential applications in information security and optoelectronic devices, but it is still a challenge to achieve RTP in organic materials under water ambient due to the unstable property of triplet states. Herein, water-induced RTP has been demonstrated in the organic microrod (OMR). Noting that the RTP intensity of the as-prepared OMR is greatly enhanced when water is introduced, and the reason for the enhancement can be attributed to the formation of hydrogen-bonded networks inside the OMR. The hydrogen-bonded networks can confine the molecular motion effectively, leading to the stability of triplet states; thus the lifetime of the OMR can reach 1.64 s after introducing water. By virtue of the long lifetime of the OMR in the presence of water, multilevel data encryption based on the OMR has been demonstrated.

Keywords: water-induced, phosphorescence, triplet states, hydrogen-bonded networks

References(40)

[1]
Kim, K. H.; Lee, S.; Moon, C. K.; Kim, S. Y.; Park, Y. S.; Lee, J. H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J. J. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 2014, 5, 4769.
[2]
Xu, J. W.; Cui, Y.; Smith, G. M.; Li, P. Y.; Dun, C. C.; Shao, L. Q.; Guo, Y.; Wang, H. Z.; Chen, Y. H.; Carrol, D. L. Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices. Light: Sci. Appl. 2018, 7, 46.
[3]
Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.; Einzinger, M.; Ha, D. G.; Wu, T. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 2016, 15, 1120-1127.
[4]
Cai, S. Z.; Shi, H. F.; Li, J. W.; Gu, L.; Ni, Y.; Cheng, Z. C.; Wang, S.; Xiong, W. W.; Li, L.; An, Z. F. et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 2017, 29, 1701244.
[5]
Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 2017, 29, 1606665.
[6]
Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125-14133.
[7]
Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418-426.
[8]
Li, Q. J.; Zhou, M.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 2018, 9, 734.
[9]
Wu, Q.; Ma, H. L.; Ling, K.; Gan, N.; Cheng, Z. C.; Gu, L.; Cai, S. Z.; An, Z. F.; Shi, H. F.; Huang, W. Reversible ultralong organic phosphorescence for visual and selective chloroform detection. ACS Appl. Mater. Interfaces 2018, 10, 33730-33736.
[10]
Tan, J.; Ye, Y. X.; Ren, X. D.; Zhao, W.; Yue, D. M. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices. J. Mater. Chem. C 2018, 6, 7890-7895.
[11]
Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed. 2018, 57, 2393-2398.
[12]
Tian, Z.; Li, D.; Ushakova, E. V.; Maslov, V. G.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Rogach, A. L. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Adv. Sci. 2018, 5, 1800795.
[13]
Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.
[14]
Li, Q. J.; Zhou, M.; Yang, Q. F.; Wu, Q.; Shi, J.; Gong, A. H.; Yang, M. Y. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221-8227.
[15]
Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397-1401.
[16]
Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751-5753.
[17]
Bai, L. Q.; Xue, N.; Zhao, Y. F.; Wang, X. R.; Lu, C.; Shi, W. Y. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications. Nano Res. 2018, 11, 2034-2045.
[18]
Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231-7235.
[19]
An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685-690.
[20]
Wang, B. L.; Yu, Y.; Zhang, H. Y.; Xuan, Y. Z.; Chen, G. R.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots in a matrix: Energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18443-18448.
[21]
Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Materials Lett. 2019, 1, 58-63.
[22]
Bian, L. F.; Shi, H. F.; Wang, X.; Ling, K.; Ma, H. L.; Li, M. P.; Cheng, Z. C.; Ma, C. Q.; Cai, S. Z.; Wu, Q. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 2018, 140, 10734-10739.
[23]
Wang, B. L.; Mu, Y.; Zhang, H. Y.; Shi, H. Z.; Chen, G. R.; Yu, Y.; Yang, Z. Q.; Li, J. Y.; Yu, J. H. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Cent. Sci. 2019, 5, 349-356.
[24]
Zhang, G. Q.; Chen, J. B.; Payne, S. J.; Kooi, S. E.; Demas, J. N.; Fraser, C. L. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942-8943.
[25]
Pan, S. F.; Chen, Z. T.; Zheng, X. L.; Wu, D. H.; Chen, G. L.; Xu, J.; Feng, H.; Qian, Z. S. Ultralong room-temperature phosphorescence from supramolecular behavior via intermolecular electronic coupling in pure organic crystals. J. Phys. Chem. Lett. 2018, 9, 3939-3945.
[26]
Li, J. Y.; Wang, B. L.; Zhang, H. Y.; Yu, J. H. Carbon dots-in-matrix boosting intriguing luminescence properties and applications. Small 2019, 15, 1805504.
[27]
Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584-6590.
[28]
Dong, X. W.; Wei, L. M.; Su, Y. J.; Li, Z. L.; Geng, H. J.; Yang, C.; Zhang, Y. F. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. J. Mater. Chem. C 2015, 3, 2798-2801.
[29]
Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M. D.; Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8. Adv. Opt. Mater. 2016, 4, 1015-1021.
[30]
Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177-11181.
[31]
Shi, W. Y.; Yao, J.; Bai, L. Q.; Lu, C. Defect-stabilized triplet state excitons: Toward ultralong organic room-temperature phosphorescence. Adv. Funct. Mater. 2018, 28, 1804961.
[32]
Tang, G. Q.; Zhang, K.; Feng, T. L.; Tao, S. Y.; Han, M.; Li, R.; Wang, C. C.; Wang, Y.; Yang, B. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. J. Mater. Chem. C 2019, 7, 8680-8687.
[33]
Chen, Z. Q.; Bian, Z. Q.; Huang, C. H. Functional IrIII complexes and their applications. Adv. Mater. 2010, 22, 1534-1539.
[34]
Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606-3617.
[35]
Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 131, 7278-7283.
[36]
Cheng, Z. C.; Shi, H. F.; Ma, H. L.; Bian, L. F.; Wu, Q.; Gu, L.; Cai, S. Z.; Wang, X.; Xiong, W. W.; An, Z. F. et al. Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 678-682.
[37]
Chai, Z. F.; Wang, C.; Wang, J. F.; Liu, F.; Xie, Y. J.; Zhang, Y. Z.; Li, J. R.; Li, Q. Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chem. Sci. 2017, 8, 8336-8344.
[38]
Cuttell, D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc. 2002, 124, 6-7.
[39]
Fateminia, S. M. A.; Mao, Z.; Xu, S. D.; Yang, Z. Y.; Chi, Z. G.; Liu, B. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem., Int. Ed. 2017, 56, 12160-12164.
[40]
Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater. 2017, 29, 4866-487.
File
12274_2020_2710_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2019
Revised: 08 February 2020
Accepted: 10 February 2020
Published: 26 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904326, 21601159, 61604132, and 51602288), the National Science Fund for Distinguished Young Scholars (No. 61425021), and Key Science and Technology Project of Henan Province (No. 171100210600).

Return