Journal Home > Volume 13 , Issue 3

Particulate matter (PM) pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed. It is urgent to remove PM from high-temperature pollution sources, such as industrial emissions, coal furnaces, and automobile exhaust gases. However, filtration at pollution sources remains challenging because most existing air filters are not resistant to high temperature. Herein, heat-resistant polyimide (PI) nanofibrous air filters are fabricated via a simple and scalable solution blow-spinning method. These air filters show excellent thermal stability at high temperature up to 420 °C. They exhibit a filtration efficiency as high as 99.73% at ambient temperature and over 97% at 300 °C. In addition, a field test shows that the filters remove > 97% of PM from the car exhaust fumes. Hence, the blow-spun PI nanofibrous membranes combined with the facile preparation strategy have great potential in high temperature air filtration fields and other similar applications such as water purification and protein separation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-scale blow spinning of heat-resistant nanofibrous air filters

Show Author's information Ziwei Li1,§Jianan Song1,§Yuanzheng Long1Chao Jia1Zhenglian Liu2Lei Li1Cheng Yang1Junchen Liu3Sen Lin3Haiyang Wang1Yibo Liu1Minghao Fang2Hui Wu1( )
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

§ Ziwei Li and Jianan Song contributed equally to this work.

Abstract

Particulate matter (PM) pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed. It is urgent to remove PM from high-temperature pollution sources, such as industrial emissions, coal furnaces, and automobile exhaust gases. However, filtration at pollution sources remains challenging because most existing air filters are not resistant to high temperature. Herein, heat-resistant polyimide (PI) nanofibrous air filters are fabricated via a simple and scalable solution blow-spinning method. These air filters show excellent thermal stability at high temperature up to 420 °C. They exhibit a filtration efficiency as high as 99.73% at ambient temperature and over 97% at 300 °C. In addition, a field test shows that the filters remove > 97% of PM from the car exhaust fumes. Hence, the blow-spun PI nanofibrous membranes combined with the facile preparation strategy have great potential in high temperature air filtration fields and other similar applications such as water purification and protein separation.

Keywords: nanofibers, air filters, heat-resistant, blow spinning

References(40)

[1]
Nel, A. Atmosphere. Air pollution-related illness: Effects of particles. Science 2005, 308, 804-806.
[2]
Seinfeld, J. H. Urban air pollution: State of the science. Science 1989, 243, 745-752.
[3]
Matti Maricq, M. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2007, 38, 1079-1118.
[4]
Pope III, C. A.; Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 2006, 56, 709-742.
[5]
Brook, R. D.; Rajagopalan, S.; Pope III, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation 2010, 121, 2331-2378.
[6]
Harrison, R. M.; Yin, J. X. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85-101.
[7]
Burnett, R. T.; Pope III, C. A.; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397-403.
[8]
Timonen, K. L.; Vanninen, E.; de Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D. R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A. et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Exp. Sci. Environ. Epidemiol. 2006, 16, 332-341.
[9]
Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43.
[10]
Xing, Y. F.; Xu, Y. H.; Shi, M. H.; Lian, Y. X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69-E74.
[11]
Song, C. B.; He, J. J.; Wu, L.; Jin, T. S.; Chen, X.; Li, R. P.; Ren, P. P.; Zhang, L.; Mao, H. J. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575-586.
[12]
Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.
[13]
Li, Y. L.; Sun, H.; Lai, J. P.; Chang, X. Y.; Zhang, P.; Chen, S. L. Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation. Microchim. Acta 2018, 185, 122.
[14]
Jing, L.; Shim, K.; Toe, C. Y.; Fang, T.; Zhao, C.; Amal, R.; Sun, K. N.; Kim, J. H.; Ng, Y. H. Electrospun polyacrylonitrile-ionic liquid nanofibers for superior PM2.5 capture capacity. ACS Appl. Mater. Interfaces 2016, 8, 7030-7036.
[15]
Khalid, B.; Bai, X. P.; Wei, H. H.; Huang, Y.; Wu, H.; Cui, Y. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett. 2017, 17, 1140-1148.
[16]
Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642-3649.
[17]
Huang, Y.; Song, J. N.; Yang, C.; Long, Z. Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98-113.
[18]
Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590-2597.
[19]
Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley: New York, 1999.
[20]
Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5-17.
[21]
Xu, J. W.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R. F.; Liu, Y. Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett. 2016, 16, 1270-1275.
[22]
Chen, Y. F.; Zhang, S. H.; Cao, S. J.; Li, S. Q.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J. W.; Feng, X.; Ma, X. J. et al. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater. 2017, 29, 1606221.
[23]
Kang, C. W.; Ko, Y. J.; Lee, S. M.; Kim, H. J.; Son, S. U. Poly(ethylene terephthalate) fibers with a thin layer of click-based microporous organic network: Enhanced capture performance toward PM2.5. Adv. Mater. Interfaces 2018, 5, 1800628.
[24]
Gu, G. Q.; Han, C. B.; Tian, J. J.; Jiang, T.; He, C.; Lu, C. X.; Bai, Y.; Nie, J. H.; Li, Z.; Wang, Z. L. Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Res. 2018, 11, 4090-4101.
[25]
Bai, Y.; Han, C. B.; He, C.; Gu, G. Q.; Nie, J. H.; Shao, J. J.; Xiao, T. X.; Deng, C. R.; Wang, Z. L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 2018, 28, 1706680.
[26]
Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S. H. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network. Nano Lett. 2017, 17, 4339-4346.
[27]
Tian, H. F.; Fu, X. W.; Zheng, M.; Wang, Y.; Li, Y. C.; Xiang, A. M.; Zhong, W. H. Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Res. 2018, 11, 4265-4277.
[28]
Han, K. S.; Lee, S.; Kim, M.; Park, P.; Lee, M. H.; Nah, J. Electrically activated ultrathin PVDF-TrFE air filter for high-efficiency PM1.0 filtration. Adv. Funct. Mater. 2019, 29, 1903633.
[29]
Liu, H.; Zhang, S. C.; Liu, L. F.; Yu, J. Y.; Ding, B. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv. Funct. Mater. 2019, 29, 1904108.
[30]
Ma, L.; Verelst, H.; Baron, G. V. Integrated high temperature gas cleaning: Tar removal in biomass gasification with a catalytic filter. Catal. Today 2005, 105, 729-734.
[31]
Wang, H. L.; Lin, S.; Yang, S.; Yang, X. D.; Song, J. N.; Wang, D.; Wang, H. Y.; Liu, Z. L.; Li, B.; Fang, M. H. et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small 2018, 14, 1800258.
[32]
Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218-222.
[33]
Heidenreich, S. Hot gas filtration—A review. Fuel 2013, 104, 83-94.
[34]
Dou, B. L.; Wang, C.; Chen, H. S.; Song, Y. C.; Xie, B. Z.; Xu, Y. J.; Tan, C. Q. Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: A review. Chem. Eng. Res. Des. 2012, 90, 1901-1917.
[35]
Peirce, J. J.; Weiner, R. F.; Vesilind, P. A. Environmental Pollution and Control, 4th ed.; Butterworth-Heinemann: Woburn, 1998.
[36]
Agag, T.; Koga, T.; Takeichi, T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer 2001, 42, 3399-3408.
[37]
Jiang, S. H.; Hou, H. Q.; Agarwal, S.; Greiner, A. Polyimide nanofibers by “green” electrospinning via aqueous solution for filtration applications. ACS Sustainable Chem. Eng. 2016, 4, 4797-4804.
[38]
Gu, G. Q.; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211-6217.
[39]
Liang, X. X.; Yang, Y.; Jin, X.; Huang, Z. H.; Kang, F. Y. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1-7.
[40]
Schoental, R.; GlBbard, S. Carcinogens in Chinese incense smoke. Nature 1967, 216, 612.
File
12274_2020_2708_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2019
Revised: 07 February 2020
Accepted: 10 February 2020
Published: 09 March 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51788104 and 51661135025), the National Basic Research Program of China (No. 2015CB932500) and China Postdoctoral Science Foundation (Nos. 2018M640124 and 2019T120083).

Return