Journal Home > Volume 13 , Issue 4

Drumheadlike surface states are typical characteristics in nodal line semimetals and bring varieties of unusual attractive properties. Here we demonstrate the double drumheadlike surface states in group V elemental semimetals As, Sb, Bi, which family materials behave a nodal line topology with a 3D flowerlike nodal line, using first-principles calculations. On (001) surface of group V elemental semimetals, the projection pattern of the nodal line overlaps and a complicated double drumheadlike surface state appears inside the overlapped region. This double surface state is widely distributed on the surface region up to a penetration depth of 3.5 nm, which is much deeper than the depth of single surface state on (111) surface. Given that the simplicity of the elemental structure and the small gap induced by the spin orbit coupling, this family materials are promising candidates for the experimental observation of the novel double drumheadlike surface state.


menu
Abstract
Full text
Outline
About this article

Double drumheadlike surface states in elemental group V nodal line semimetals

Show Author's information Yang HangWanlin Guo( )
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Drumheadlike surface states are typical characteristics in nodal line semimetals and bring varieties of unusual attractive properties. Here we demonstrate the double drumheadlike surface states in group V elemental semimetals As, Sb, Bi, which family materials behave a nodal line topology with a 3D flowerlike nodal line, using first-principles calculations. On (001) surface of group V elemental semimetals, the projection pattern of the nodal line overlaps and a complicated double drumheadlike surface state appears inside the overlapped region. This double surface state is widely distributed on the surface region up to a penetration depth of 3.5 nm, which is much deeper than the depth of single surface state on (111) surface. Given that the simplicity of the elemental structure and the small gap induced by the spin orbit coupling, this family materials are promising candidates for the experimental observation of the novel double drumheadlike surface state.

Keywords: electronic structure, double drumheadlike surface states, nodal line semimetals, elemental materials

References(44)

[1]
Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.
[2]
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.
[3]
Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101.
[4]
Young, S. M.; Zaheer, S.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405.
[5]
Wang, Z. J.; Weng, H. M.; Wu, Q. S.; Dai, X.; Fang, Z. Three-dimensional dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 2013, 88, 125427.
[6]
Wang, Z. J.; Sun, Y.; Chen, X. Q.; Franchini, C.; Xu, G.; Weng, H. M.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012 85, 195320.
[7]
Weng, H. M.; Fang, C.; Fang, Z.; Bernevig, B. A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 011029.
[8]
Soluyanov, A. A.; Gresch, D.; Wang, Z. J.; Wu, Q. S.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl semimetals. Nature 2015, 527, 495-498.
[9]
Phillips, M.; Aji, V. Tunable line node semimetals. Phys. Rev. B 2014, 90, 115111.
[10]
Burkov, A. A.; Hook, M. D.; Balents, L. Topological nodal semimetals. Phys. Rev. B 2011, 84, 235126.
[11]
Kim, Y.; Wieder, B. J.; Kane, C. L.; Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 2015, 115, 036806.
[12]
Kopnin, N. B.; Heikkilä, T. T.; Volovik, G. E. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 2011, 83, 220503.
[13]
Volovik, G. E. From standard model of particle physics to room-temperature superconductivity. Phys. Scr. 2015, 2015, 014014.
[14]
Rhim, J. W.; Kim, Y. B. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra. Phys. Rev. B 2015, 92, 045126.
[15]
Huh, Y.; Moon, E. G.; Kim, Y. B. Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B 2016, 93, 035138.
[16]
Wang, J. T.; Weng, H. M.; Nie, S. M.; Fang, Z.; Kawazoe, Y.; Chen, C. F. Body-centered orthorhombic C16: A novel topological node-line semimetal. Phys. Rev. Lett. 2016, 116, 195501.
[17]
Xu, Q. N.; Yu, R.; Fang, Z.; Dai, X.; Weng, H. M. Topological nodal line semimetals in the CaP3 family of materials. Phys. Rev. B 2017, 95, 045136.
[18]
Yu, R.; Wu, Q. S.; Fang, Z.; Weng, H. M. From nodal chain semimetal to Weyl semimetal in HfC. Phys. Rev. Lett. 2017, 119, 036401.
[19]
Bzdušek, T.; Wu, Q. S.; Rüegg, A.; Sigrist, M.; Soluyanov, A. A. Nodal-chain metals. Nature 2016, 538, 75-78.
[20]
Feng, X.; Yue, C. M.; Song, Z. D.; Wu, Q. S.; Wen, B. Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2. Phys. Rev. Mater. 2018, 2, 014202.
[21]
Yu, R.; Weng, H. M.; Fang, Z.; Dai, X.; Hu, X. Topological node-line semimetal and dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 2015, 115, 036807.
[22]
Weng, H. M.; Liang, Y. Y.; Xu, Q. N.; Yu, R.; Fang, Z.; Dai, X.; Kawazoe, Y. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 2015, 92, 045108.
[23]
Chen, W.; Lu, H. Z.; Hou, J. M. Topological semimetals with a double-helix nodal link. Phys. Rev. B 2017, 96, 041102.
[24]
Chang, P. Y.; Yee, C. H. Weyl-link semimetals. Phys. Rev. B 2017, 96, 081114.
[25]
Yan, Z. B.; Bi, R.; Shen, H. T.; Lu, L.; Zhang, S. C.; Wang, Z. Nodal-link semimetals. Phys. Rev. B 2017, 96, 041103.
[26]
Bi, R.; Yan, Z. B.; Lu, L.; Wang, Z. Nodal-knot semimetals. Phys. Rev. B 2017, 96, 201305.
[27]
Zhao, J. Z.; Yu, R.; Weng, H. M.; Fang, Z. Topological node-line semimetal in compressed black phosphorus. Phys. Rev. B 2016, 94, 195104.
[28]
Huang, H. Q.; Liu, J. P.; Vanderbilt, D.; Duan, W. H. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys. Rev. B 2016, 93, 201114.
[29]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[30]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[31]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[32]
Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309-2310.
[33]
Sancho, M. P. L.; Sancho, J. M. L.; Sancho, J. M. L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 1985, 15, 851-858.
[34]
Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405-416.
[35]
Barrett, C. S.; Cucka, P.; Haefner, K. The crystal structure of antimony at 4.2, 78 and 298 K. Acta Crystallogr. 1963, 16, 451-453.
[36]
Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.
[37]
Zhang, P.; Ma, J. Z.; Ishida, Y.; Zhao, L. X.; Xu, Q. N.; Lv, B. Q.; Yaji, K.; Chen, G. F.; Weng, H. M.; Dai, X. et al. Topologically entangled Rashba-split Shockley states on the surface of grey arsenic. Phys. Rev. Lett. 2017, 118, 046802.
[38]
Yamakage, A.; Yamakawa, Y.; Tanaka, Y.; Okamoto, Y. Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn. 2016, 85, 013708.
[39]
Kou, L. Z.; Ma, Y. D.; Sun, Z. Q.; Heine, T.; Chen, C. F. Two-dimensional topological insulators: Progress and prospects. J. Phys. Chem. Lett. 2017, 8, 1905-1919.
[40]
Kou, L. Z.; Yan, B. H.; Hu, F. M.; Wu, S. C.; Wehling, T. O.; Felser, C.; Chen, C. F.; Frauenheim, T. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano Lett. 2013, 13, 6251-6255.
[41]
Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083-1089.
[42]
Du, Y. P.; Tang, F.; Wang, D.; Sheng, L.; Kan, E. J.; Duan, C. G.; Savrasov, S. Y.; Wan, X. G. CaTe: A new topological node-line and Dirac semimetal. NPJ Quantum Mater. 2017, 2, 3.
[43]
Huang, S. M.; Xu, S. Y.; Belopolski, I.; Lee, C. C.; Chang, G. Q.; Wang, B. K.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C. L. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373.
[44]
Weng, H. M.; Fang, C.; Fang, Z.; Dai, X. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev. B 2016, 94, 165201.
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2019
Revised: 16 January 2020
Accepted: 09 February 2020
Published: 11 March 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank Lu H., Liu X. F. and Zhang Z. H. for helpful discussions. This work was supported by the National Natural Science Foundation of China (No. 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-I-0418K01 and MCMS-I-0419K01), the Fundamental Research Funds for the Central Universities (Nos. NC2018001, NP2019301, and NJ2019002), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0227).

Return