AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (51.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tailoring molecular island shapes: Influence of microscopic interaction on mesostructure

Simon Aeschlimann1,2Lu Lyu3Benjamin Stadtmüller3,4Martin Aeschlimann3,4Angelika Kühnle5( )
Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55099, Germany
Graduate School Materials Science in Mainz, Staudingerweg 9, Mainz 55128, Germany
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger-Straße 46, Kaiserslautern 67663, Germany
Graduate School Materials Science in Mainz, Erwin-Schrödinger-Straße 46, Kaiserslautern 67663, Germany
Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
Show Author Information

Graphical Abstract

Abstract

Controlling the structure formation of molecules on surfaces is fundamental for creating molecular nanostructures with tailored properties and functionalities and relies on tuning the subtle balance between intermolecular and molecule-surface interactions. So far, however, reliable rules of design are largely lacking, preventing the controlled fabrication of self-assembled functional structures on surfaces. In addition, while so far many studies focused on varying the molecular building blocks, the impact of systematically adjusting the underlying substrate has been less frequently addressed. Here, we elucidate the potential of tailoring the mesoscopic island shape by tuning the interactions at the molecular level. As a model system, we have selected the molecule dimolybdenum tetraacetate on three prototypical surfaces, Cu(111), Au(111) and CaF2(111). While providing the same hexagonal geometry, compared to Cu(111), the lattice constants of Au(111) and CaF2(111) differ by a factor of 1.1 and 1.5, respectively. Our high-resolution scanning probe microscopy images reveal molecular-level information on the resulting islands and elucidate the molecular-level design principles for the observed mesoscopic island shapes. Our study demonstrates the capability to tailor the mesoscopic island shape by exclusively tuning the substrate lattice constant, in spite of the very different electronic structure of the substrates involved. This work provides insights for developing general design strategies for controlling molecular mesostructures on surfaces.

References

[1]
Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem., Int. Ed. 1988, 27, 89-112.
[2]
Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671-679.
[3]
Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375-407.
[4]
Erler, P.; Schmitt, P.; Barth, N.; Irmler, A.; Bouvron, S.; Huhn, T.; Groth, U.; Pauly, F.; Gragnaniello, L.; Fonin, M. Highly ordered surface self-assembly of Fe4 single molecule magnets. Nano Lett. 2015, 15, 4546-4552.
[5]
Leonhardt, E. J.; Van Raden, J. M.; Miller, D.; Zakharov, L. N.; Alemán, B.; Jasti, R. A bottom-up approach to solution-processed, atomically precise graphitic cylinders on graphite. Nano Lett. 2018, 18, 7991-7997.
[6]
Timmer, A.; Mönig, H.; Uphoff, M.; Díaz Arado, O.; Amirjalayer, S.; Fuchs, H. Site-specific adsorption of aromatic molecules on a metal/metal oxide phase boundary. Nano Lett. 2018, 18, 4123-4129.
[7]
Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312-1319.
[8]
Nieckarz, D.; Rżysko, W.; Szabelski, P. On-surface self-assembly of tetratopic molecular building blocks. Phys. Chem. Chem. Phys. 2018, 20, 23363-23377.
[9]
De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139-150.
[10]
Bauer, O.; Mercurio, G.; Willenbockel, M.; Reckien, W.; Schmitz, C. H.; Fiedler, B.; Soubatch, S.; Bredow, T.; Tautz, F. S.; Sokolowski, M. Role of functional groups in surface bonding of planar π-conjugated molecules. Phys. Rev. B 2012, 86, 235431.
[11]
Willenbockel, M.; Lüftner, D.; Stadtmüller, B.; Koller, G.; Kumpf, C.; Soubatch, S.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces. Phys. Chem. Chem. Phys. 2015, 17, 1530-1548.
[12]
Stepanow, S.; Ohmann, R.; Leroy, F.; Lin, N.; Strunskus, T.; Wöll, C.; Kern, K. Rational design of two-dimensional nanoscale networks by electrostatic interactions at surfaces. ACS Nano 2010, 4, 1813-1820.
[13]
Zhao, W. H.; Zhu, H.; Song, H. J.; Liu, J.; Chen, Q. W.; Wang, Y.; Wu, K. Adsorption and assembly of photoelectronic TioPc molecules on coinage metal surfaces. J. Phys. Chem. C 2018, 122, 7695-7701.
[14]
Huempfner, T.; Sojka, F.; Forker, R.; Fritz, T. Growth of coronene on (100)- and (111)-surfaces of fcc-crystals. Surf. Sci. 2015, 639, 80-88.
[15]
Mannsfeld, S. C. B.; Fritz, T. Understanding organic-inorganic heteroepitaxial growth of molecules on crystalline substrates: Experiment and theory. Phys. Rev. B 2005, 71, 235405.
[16]
Kumar, A.; Banerjee, K.; Liljeroth, P. Molecular assembly on two-dimensional materials. Nanotechnology 2017, 28, 082001.
[17]
He, X. Y.; Zhang, L.; Chua, R.; Wong, P. K. J.; Arramel, A.; Feng, Y. P.; Wang, S. J.; Chi, D. Z.; Yang, M.; Huang, Y. L. et al. Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nat. Comm. 2019, 10, 2847.
[18]
Lazarov, V. K.; Cai, Z. H.; Yoshida, K.; Zhang, K. H. L.; Weinert, M.; Ziemer, K. S.; Hasnip, P. J. Dynamically stabilized growth of polar oxides: The case of MgO(111). Phys. Rev. Lett. 2011, 107, 056101.
[19]
Goniakowski, J.; Finocchi, F.; Noguera, C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2008, 71, 016501.
[20]
Noguera, C. Polar oxide surfaces. J. Phys.: Condens. Matter 2000, 12, R367-R410.
[21]
White, T. W.; Martsinovich, N.; Troisi, A.; Costantini, G. Quantifying the “subtle interplay” between intermolecular and molecule-substrate interactions in molecular assembly on surfaces. J. Phys. Chem. C 2018, 122, 17954-17962.
[22]
Otero, R.; Gallego, J. M.; De Parga, A. L. V.; Martín, N.; Miranda, R. Molecular self-assembly at solid surfaces. Adv. Mater. 2011, 23, 5148-5176.
[23]
Slater, A. G.; Beton, P. H.; Champness, N. R. Two-dimensional supramolecular chemistry on surfaces. Chem. Sci. 2011, 2, 1440-1448.
[24]
Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S. L.; Wang, C.; Beton, P. H.; Wee, A. T. S. et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445-7481.
[25]
Cun, H. Y.; Wang, Y. L.; Du, S. X.; Zhang, L.; Zhang, L. Z.; Yang, B.; He, X. B.; Wang, Y.; Zhu, X. Y.; Yuan, Q. Z. et al. Tuning structural and mechanical properties of two-dimensional molecular crystals: The roles of carbon side chains. Nano Lett. 2012, 12, 1229-1234.
[26]
Gesquière, A.; Jonkheijm, P.; Hoeben, F. J. M.; Schenning, A. P. H. J.; De Feyter, S.; De Schryver, F. C.; Meijer, E. W. 2D-structures of quadruple hydrogen bonded oligo(p-phenylenevinylene)s on graphite: Self-assembly behavior and expression of chirality. Nano Lett. 2004, 4, 1175-1179.
[27]
Mukherjee, A.; Sanz-Matias, A.; Velpula, G.; Waghray, D.; Ivasenko, O.; Bilbao, N.; Harvey, J. N.; Mali, K. S.; De Feyter, S. Halogenated building blocks for 2D crystal engineering on solid surfaces: Lessons from hydrogen bonding. Chem. Sci. 2019, 10, 3881-3891.
[28]
Kühnle, A.; Molina, L. M.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Growth of unidirectional molecular rows of cysteine on Au(110)-(1×2) driven by adsorbate-induced surface rearrangements. Phys. Rev. Lett. 2004, 93, 086101.
[29]
Rahe, P.; Nimmrich, M.; Greuling, A.; Schütte, J.; Stará, I. G.; Rybáček, J.; Huerta-Angeles, G.; Starý, I.; Rohlfing, M.; Kühnle, A. Toward molecular nanowires self-assembled on an insulating substrate: Heptahelicene-2-carboxylic acid on calcite (101(_) 4). J. Phys. Chem. C 2010, 114, 1547-1552.
[30]
Pawin, G.; Wong, K. L.; Kwon, K. Y.; Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 2006, 313, 961-962.
[31]
Li, J.; Wieghold, S.; Öner, M. A.; Simon, P.; Hauf, M. V.; Margapoti, E.; Garrido, J. A.; Esch, F.; Palma, C. A.; Barth, J. V. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform. Nano Lett. 2014, 14, 4486-4492.
[32]
Kim, H. W.; Jung, J.; Han, M.; Ku, J.; Kuk, Y.; Kim, Y. Dimensionality control of self-assembled azobenzene derivatives on a gold surface. J. Phys. Chem. C 2019, 123, 8859-8864.
[33]
Kezilebieke, S.; Amokrane, A.; Boero, M.; Clair, S.; Abel, M.; Bucher, J. P. Steric and electronic selectivity in the synthesis of Fe-1,2,4,5-tetracyanobenzene (TCNB) complexes on Au(111): From topological confinement to bond formation. Nano Res. 2014, 7, 888-897.
[34]
Keeling, D. L.; Oxtoby, N. S.; Wilson, C.; Humphry, M. J.; Champness, N. R.; Beton, P. H. Assembly and processing of hydrogen bond induced supramolecular nanostructures. Nano Lett. 2003, 3, 9-12.
[35]
Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029-1031.
[36]
Blunt, M. O.; Hu, Y.; Toft, C. W.; Slater, A. G.; Lewis, W.; Champness, N. R. Controlling the two-dimensional self-assembly of functionalized porphyrins via adenine-thymine quartet formation. J. Phys. Chem. C 2018, 122, 26070-26079.
[37]
Pfeiffer, C. R.; Pearce, N.; Champness, N. R. Complexity of two-dimensional self-assembled arrays at surfaces. Chem. Commun. 2017, 53, 11528-11539.
[38]
Goiri, E.; Matena, M.; El-Sayed, A.; Lobo-Checa, J.; Borghetti, P.; Rogero, C.; Detlefs, B.; Duvernay, J.; Ortega, J. E.; De Oteyza, D. G. Self-assembly of bicomponent molecular monolayers: Adsorption height changes and their consequences. Phys. Rev. Lett. 2014, 112, 117602.
[39]
Stadtmüller, B.; Lüftner, D.; Willenbockel, M.; Reinisch, E. M.; Sueyoshi, T.; Koller, G.; Soubatch, S.; Ramsey, M. G.; Puschnig, P.; Tautz, F. S. et al. Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces. Nat. Commun. 2014, 5, 3685.
[40]
Hooks, D. E.; Fritz, T.; Ward, M. D. Epitaxy and molecular organization on solid substrates. Adv. Mater. 2001, 13, 227-241.
[41]
Zhou, H. T.; Zhang, L. Z.; Mao, J. H.; Li, G.; Zhang, Y.; Wang, Y. L.; Du, S. X.; Hofer, W. A.; Gao, H. J. Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001). Nano Res. 2013, 6, 131-137.
[42]
Kalashnyk, N.; Ledieu, J.; Gaudry, É.; Cui, C.; Tsai, A. P.; Fournée, V. Building 2D quasicrystals from 5-fold symmetric corannulene molecules. Nano Res. 2018, 11, 2129-2138.
[43]
Cotton, F. A.; Daniels, L. M.; Hillard, E. A.; Murillo, C. A. The lengths of molybdenum to molybdenum quadruple bonds: Correlations, explanations, and corrections. Inorg. Chem. 2002, 41, 2466-2470.
[44]
Kelley, M. H.; Fink, M. The molecular structure of dimolybdenum tetra-acetate. J. Chem. Phys. 1982, 76, 1407-1416.
[45]
Ross, R. G.; Hume-Rothery, W. High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten. J. Less Common Met. 1963, 5, 258-270.
[46]
Lawton, D.; Mason, R. The molecular structure of molybdenum(II) acetate. J. Am. Chem. Soc. 1965, 87, 921-922.
[47]
Cotton, F. A.; Mester, Z. C.; Webb, T. R. Dimolybdenum tetraacetate. Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 1974, 30, 2768-2770.
[48]
Hino, K.; Saito, Y.; Benard, M. Electron-density distribution in crystals of tetra-μ-acetato-dimolybdenum(Mo-Mo). Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 1981, 37, 2164-2170.
[49]
Lichtenberger, D. L.; Ray, C. D.; Stepniak, F.; Chen, Y.; Weaver, J. H. The electronic nature of the metal-metal quadruple bond: Variable photon energy photoelectron spectroscopy of Mo2(O2CCH3)4. J. Am. Chem. Soc. 1992, 114, 10492-10497.
[50]
Lichtenberger, D. L.; Kristofzski, J. G. Intermolecular influences on M-M multiple bonds from thin-film UPS studies of group VI M2(O2CCH3)4 complexes. J. Am. Chem. Soc. 1987, 109, 3458-3459.
[51]
Engelhardt, J. B.; Dabringhaus, H.; Wandelt, K. Atomic force microscopy study of the CaF2(111) surface: From cleavage via island to evaporation topographies. Surf. Sci. 2000, 448, 187-200.
[52]
Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69, 668-673.
[53]
Kollamana, J.; Wei, Z.; Lyu, L.; Zimmer, M.; Dietrich, F.; Eul, T.; Stöckl, J.; Maniraj, M.; Ponzoni, S.; Cinchetti, M. et al. Control of cooperativity through a reversible structural phase transition in momo-methyl/Cu(111). Adv. Funct. Mater. 2018, 28, 1703544.
[54]
Foster, A. S.; Barth, C.; Shluger, A. L.; Reichling, M. Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys. Rev. Lett. 2001, 86, 2373-2376.
[55]
Foster, A. S.; Barth, C.; Shluger, A. L.; Nieminen, R. M.; Reichling, M. Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Phys. Rev. B 2002, 66, 235417.
Nano Research
Pages 843-852
Cite this article:
Aeschlimann S, Lyu L, Stadtmüller B, et al. Tailoring molecular island shapes: Influence of microscopic interaction on mesostructure. Nano Research, 2020, 13(3): 843-852. https://doi.org/10.1007/s12274-020-2705-0
Topics:

833

Views

10

Downloads

4

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 15 November 2019
Revised: 07 February 2020
Accepted: 09 February 2020
Published: 06 March 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return