Journal Home > Volume 13 , Issue 3

Iron-based oxygen reduction reaction (ORR) catalysts have been the focus of research, and iron sources play an important role for the preparation of efficient ORR catalysts. Here, we successfully use LiFePO4 as ideal sources of Fe and P to construct the heteroatom doped Fe-based carbon materials. The obtained Fe-N-P co-doped coral-like carbon nanotube arrays encapsulated Fe2P catalyst (C-ZIF/LFP) shows very high half-wave potential of 0.88 V in alkaline electrolytes toward ORR, superior to Pt/C (0.85 V), and also presents a high half-wave potential of 0.74 V in acidic electrolytes, comparable to Pt/C (0.8 V). When further applied into a home-made Zn-air battery as cathode, a peak power density of 140 mW·cm-2 is reached, exceeds commercial Pt/C (110 mW·cm-2). Besides, it also presents exceptional durability and methanol resistance compared with Pt/C. Noticeably, the preparation method of such a high-performance catalyst is simple and easy to optimize, suitable for the large-scale production. What’s more, it opens up a more sustainable development scenario to reduce the hazardous wastes such as LiFePO4 by directly using them for preparing high-performance ORR catalysts.

File
12274_2020_2702_MOESM1_ESM.pdf (5.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2019
Revised: 18 January 2020
Accepted: 06 February 2020
Published: 26 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0202603) and the National Natural Science Foundation of China (No. 51672204).

Return