Journal Home > Volume 13 , Issue 3

Developing efficient and low-cost electrocatalysts for oxygen evolution reaction (OER) with high electrochemical activity and durability for diverse renewable and sustainable energy technologies remains challenging. Herein, an ultrasonic-assisted and coordination modulation strategy is developed to construct sandwich-like metal-organic framework (MOF) derived hydroxide nanosheet (NS) arrays/graphene oxide (GO) composite via one-step self-transformation route. Inducing from unsteady state, the dodecahedral ZIF-67 with Co2+ in tetrahedral coordination auto-converts into defect-rich ultrathin layered hydroxides with the interlayered ion NO3-. The self-transforming α-Co(OH)2/GO nanosheet arrays from ZIF-67 (Co(OH)2-GNS) change the coordination mode of Co2+ and bring about the exposure of more metal active sites, thereby enhancing the spatial utilization ratio within the framework. As monometal-based electrocatalyst, the optimized Co(OH)2-GNS exhibits remarkable OER catalytic performance evidenced by a low overpotential of 259 mV to achieve a current density of 10 mA·cm-2 in alkaline medium, even exceeding commercial RuO2. During the oxygen evolution process, electron migration can be accelerated by the interfacial/in-plane charge polarization and local electric field, corroborated by the off-axis electron holography. Density functional theory (DFT) calculations further studied the collaboration between ultrathin Co(OH)2 NS and GO, which leads to lower energy barriers of intermediate products and greatly promotes electrocatalytic property.

File
12274_2020_2701_MOESM1_ESM.pdf (8.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2019
Revised: 02 February 2020
Accepted: 06 February 2020
Published: 26 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2018YFA209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Return