AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries

Guangyao Ma1Xiao Xu1Zhenyu Feng1Chenjing Hu1Yansong Zhu1Xianfeng Yang2Jian Yang1( )Yitai Qian1,3
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Carbon-coated mesoporous Co9S8 nanoparticles supported on reduced graphene oxide (rGO) are successfully synthesized by a simple process. This composite makes full use of the protection of the carbon layer on the surface, the good conductivity and three-dimensional (3D) structure of rGO, the mesoporous structure and nanoscale size of Co9S8, thereby presenting the excellent electrochemical performances in potassium-ion batteries, 407.9 mAh·g-1 after 100 cycles at 0.2 A·g-1 and 215.1 mAh·g-1 at 5 A·g-1 in rate performances. After 1,200 cycles at 1.0 A·g-1, this composite still remains a capacity of 210.8 mAh·g-1. The redox reactions for potassium storage are revealed by ex-situ transmission electron microscope (TEM)/high-resolution TEM (HRTEM) images, selected area electron diffraction (SAED) patterns and X-ray photoelectron spectroscopy (XPS) spectra. The application of this composite as the host of sulfur for Li-S batteries is also explored. It sustains a capacity of 431.8 mAh·g-1 after 800 cycles at 3 C, leading to a degradation of 0.052% per cycle. These results confirm the wide applications of this composite for electrochemical energy storage.

Electronic Supplementary Material

Download File(s)
12274_2020_2699_MOESM1_ESM.pdf (3.6 MB)

References

[1]
Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241-248.
[2]
Xiong, P. X.; Bai, P. X.; Tu, S. B.; Cheng, M. R.; Zhang, J. F.; Sun, J.; Xu, Y. H. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018, 14, 1802140.
[3]
Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025-1031.
[4]
Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Qin, J. Q.; Wang, S.; Shi, X. Y.; Bao, X. H. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017, 11, 4792-4800.
[5]
Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313-1321.
[6]
Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574-581.
[7]
Wang, L. F.; Li, S. J.; Li, J. L.; Yan, S.; Zhang, X. Y.; Wei, D. H.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater. Today Energy 2019, 13, 195-204.
[8]
Zhong, Y.; Xia, X. H.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, X. L.; Zhang, Q.; Tu, J. P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701110.
[9]
Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615-623.
[10]
He, X. D.; Liu, Z. H.; Liao, J. Y.; Ding, X.; Hu, Q.; Xiao, L. N.; Wang, S.; Chen, C. H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9629-9637.
[11]
Lu, Y. Y.; Chen, J. Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci. China Chem. 2017, 60, 1533-1539.
[12]
Yi, Z.; Qian, Y.; Tian, J.; Shen, K. Z.; Lin, N.; Qian, Y. T. Self-templating growth of Sb2Se3@C microtube: A convention-alloying-type anode material for enhanced K-ion batteries. J. Mater. Chem. A 2019, 7, 12283-12291.
[13]
Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q.; He, D. L.; Wang, W. A. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci. 2018, 5, 1800782.
[14]
Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.
[15]
Gan, Q. M.; Xie, J. W.; Zhu, Y. H.; Zhang, F. C.; Zhang, P. S.; He, Z.; Liu, S. Q. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage. ACS Appl. Mater. Interfaces 2019, 11, 930-939.
[16]
Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.
[17]
Han, C. H.; Han, K.; Wang, X. P.; Wang, C. Y.; Li, Q.; Meng, J. S.; Xu, X. M.; He, Q. M.; Luo, W.; Wu, L. M. et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 2018, 10, 6820-6826.
[18]
Yi, Z.; Lin, N.; Li, T. Q.; Han, Y.; Li, Y.; Qian, Y. T. Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. Nano Res. 2019, 12, 1824-1830.
[19]
Sun, S. X.; Luo, J. H.; Qian, Y.; Jin, Y.; Liu, Y.; Qiu, Y. G.; Li, X.; Fang, C.; Han, J. T.; Huang, Y. H. Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1801080.
[20]
Jiao, Y. C.; Mukhopadhyay, A.; Ma, Y.; Yang, L.; Hafez, A. M.; Zhu, H. L. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702779.
[21]
Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614-4626.
[22]
Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658-12667.
[23]
Chen, C. M.; Yang, Y. C.; Tang, X.; Qiu, R. H.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 2019, 15, 1804740.
[24]
Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. C.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.
[25]
Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900323.
[26]
Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 2019, 7, 5504-5512.
[27]
Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. E.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.
[28]
Luo, S. Q.; Zheng, C. M.; Sun, W. W.; Wang, Y. Q.; Ke, J. H.; Guo, Q. P.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Xie, W. Multi-functional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim. Acta 2018, 289, 94-103.
[29]
Ma, G. Y.; Huang, K. S.; Ma, J. S.; Ju, Z. C.; Xing, Z.; Zhuang, Q. C. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 2017, 5, 7854-7861.
[30]
Liu, X. D.; Liu, H. T.; Zhao, Y. M.; Dong, Y. Z.; Fan, Q. H.; Kuang, Q. Synthesis of the Carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 2016, 32, 12593-12602.
[31]
Wang, C. D.; Xie, H.; Chen, S. M.; Ge, B. H.; Liu, D. B.; Wu, C. Q.; Xu, W. J.; Chu, W. S.; Babu, G.; Ajayan, P. M. et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 2018, 30, 1802525.
[32]
Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/mxene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448-3456.
[33]
He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35-45.
[34]
Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.
[35]
Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.
[36]
Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.
[37]
Yao, Q. Q.; Zhang, J. S.; Li, J. X.; Huang, W. J.; Hou, K.; Zhao, Y.; Guan, L. H. Yolk-shell NiSx@C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. J. Mater. Chem. A 2019, 7, 18932-18939.
[38]
Zhou, J.; Zhao, H. Y.; Zhang, Q. L.; Li, T. Q.; Li, Y.; Lin, N.; Qian, Y. T. Carbon nanotube-stabilized Co9S8 dual-shell hollow spheres for high-performance K-ion storage. Chem. Commun. 2019, 55, 1406-1409.
[39]
Mao, M. L.; Cui, C. Y.; Wu, M. G.; Zhang, M.; Gao, T.; Fan, X. L.; Chen, J.; Wang, T. H.; Ma, J. M.; Wang, C. S. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346-352.
[40]
Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.
[41]
Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.
[42]
Zhang, D. M.; Jia, J. H.; Yang, C. C.; Jiang, Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater. 2020, 24, 439-449.
[43]
Xu, X. J.; Liu, J.; Liu, J. W.; Ouyang, L. Z.; Hu, R. Z.; Wang, H.; Yang, L. C.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573.
[44]
Li, Z. L.; Xiao, Z. B.; Wang, S. Q.; Cheng, Z. B.; Li, P. Y.; Wang, R. H. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902322.
[45]
Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater. 2019, 18, 375-381.
[46]
Chen, L.; Yang, W. W.; Liu, J. G.; Zhou, Y. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Res. 2019, 12, 2743-2748.
Nano Research
Pages 802-809
Cite this article:
Ma G, Xu X, Feng Z, et al. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Research, 2020, 13(3): 802-809. https://doi.org/10.1007/s12274-020-2699-7
Topics:

740

Views

64

Crossref

N/A

Web of Science

66

Scopus

6

CSCD

Altmetrics

Received: 30 November 2019
Revised: 27 January 2020
Accepted: 04 February 2020
Published: 28 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return