AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage

Jien Li1Shuang Luo1Congcong Wang1Qian Tang1Yanwei Wang1Xiangyu Han1Hao Ran1Jing Wan1Xiao Gu2( )Xue Wang1( )Chenguo Hu1( )
Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
Faculty of Science, Ningbo University, Ningbo 315211, China
Show Author Information

Graphical Abstract

Abstract

To obtain symmetric supercapacitors (SCs) with high energy density, it is critical to fabricate an electrode with wide potential window and excellent capacitive performance. Herein, by using the strong double hydrolysis reaction between anions and cations, the FeOOH nanosheets on the surface of activated carbon cloth (FeOOH@AC) are prepared through a simple hydrothermal process. The FeOOH@AC electrode exhibits maximum capacitance of 4,090 mF·cm-2 at wider potential window -1-0 V and 3,250 mF·cm-2 at 0-1 V versus SCE in 2 M LiNO3 electrolyte. With two pieces of FeOOH@AC electrodes the obtained symmetric SC can operate at the voltage window of 2 V. This FeOOH symmetric SC shows high energy density of 13.261 mWh·cm-3 at a power density of 14.824 mW·cm-3 and maintains 4.175 mWh·cm-3 at a maximum power density of 118.564 mW·cm-3, as well as excellent charge storage capacity and cyclic stability. Li ion adsorption and diffusion mechanism on the (200) facets of FeOOH are explained by the density functional theory (DFT) calculations. The simple synthesis process and excellent capacitance performance of the FeOOH@AC composite make it a very promising candidate for high performance symmetric SC electrodes.

Electronic Supplementary Material

Download File(s)
12274_2020_2691_MOESM2_ESM.pdf (3.7 MB)

References

[1]
Liu, C. C.; Yan, X. J.; Hu, F.; Gao, G. H.; Wu, G. M.; Yang, X. W. Toward superior capacitive energy storage: Recent advances in pore engineering for dense electrodes. Adv. Mater. 2018, 30, 1705713.
[2]
Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.
[3]
Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 2017, 29, 1604569.
[4]
Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.
[5]
Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441-473.
[6]
Xu, W. N.; Jiang, Z. Q.; Yang, Q.; Huo, W. C.; Javed, M. S.; Li, Y. R.; Huang, L.; Gu, X.; Hu, C. G. Approaching the lithium-manganese oxides’ energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor. Nano Energy 2018, 43, 168-176.
[7]
Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 2017, 29, 1703463.
[8]
Xia, H.; Hong, C. Y.; Li, B.; Zhao, B.; Lin, Z. X.; Zheng, M. B.; Savilov, S. V.; Aldoshin, S. M. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 2015, 25, 627-635.
[9]
Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938-943.
[10]
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233-9280.
[11]
Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925-5950.
[12]
Jabeen, N.; Hussain, A.; Xia, Q. Y.; Sun, S.; Zhu, J. W.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804.
[13]
Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387.
[14]
Meng, X. H.; Deng, D. Trash to treasure: Waste eggshells as chemical reactors for the synthesis of amorphous Co(OH)2 nanorod arrays on various substrates for applications in rechargeable alkaline batteries and electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 5244-5253.
[15]
Chen, H. C.; Qin, Y. L.; Cao, H. J.; Song, X. X.; Huang, C. H.; Feng, H. B.; Zhao, X. S. Synthesis of amorphous nickel-cobalt- manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 2019, 17, 194-203.
[16]
Zhao, B. T.; Zhang, L.; Zhang, Q. B.; Chen, D. C.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X. H.; Song, B. et al. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 2018, 8, 1702247.
[17]
Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C. P. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 2016, 21, 145-153.
[18]
Gong, X. F.; Li, S. H.; Lee, P. S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale 2017, 9, 10794-10801.
[19]
Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Wei, Q. L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264.
[20]
Chen, L. F.; Yu, Z. Y.; Wang, J. J.; Li, Q. X.; Tan, Z. Q.; Zhu, Y. W.; Yu, S. H. Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 2015, 11, 119-128.
[21]
Liao, Q. Y.; Wang, C. X. Amorphous FeOOH nanorods and Co3O4 nanoflakes as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors. CrystEngComm 2019, 21, 662-672.
[22]
Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/ Fe2O3 quantum dots. Nano Res. 2018, 11, 4744-4758.
[23]
Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 2016, 26, 919-930.
[24]
Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.
[25]
Huang, C. H.; Song, X. X.; Qin, Y. L.; Xu, B. H.; Chen, H. C. Cation exchange reaction derived amorphous bimetal hydroxides as advanced battery materials for hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 21047-21055.
[26]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[27]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[28]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[29]
Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440-2445.
[30]
Xin, F. E.; Jia, Y. F.; Sun, J.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Enhancing the capacitive performance of carbonized wood by growing FeOOH nanosheets and poly(3,4-ethylenedioxythiophene) coating. ACS Appl. Mater. Interfaces 2018, 10, 32192-32200.
[31]
Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564-1574.
[32]
Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.
[33]
Shen, B. S.; Guo, R. S.; Lang, J. W.; Liu, L.; Liu, L. Y.; Yan, X. B. A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J. Mater. Chem. A 2016, 4, 8316-8327.
[34]
Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676-2682.
[35]
Nieuwoudt, M. K.; Comins, J. D.; Cukrowski, I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: Near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc. 2011, 42, 1335-1339.
[36]
Colomban, P.; Cherifi, S.; Despert, G. Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectrosc. 2008, 39, 881-886.
[37]
de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873-878.
[38]
Nguyen, T.; Fátima Montemor, M. γ-FeOOH and amorphous Ni-Mn hydroxide on carbon nanofoam paelectrodes for hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 2612-2624.
[39]
Imtiaz, M.; Chen, Z. X.; Zhu, C. L.; Pan, H.; Zada, I.; Li, Y.; Bokhari, S. W.; Luan, R. Y.; Nigar, S.; Zhu, S. M. In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries. Electrochim. Acta 2018, 283, 401-409.
[40]
Xiong, G. P.; He, P. G.; Lyu, Z. P.; Chen, T. F.; Huang, B. Y.; Chen, L.; Fisher, T. S. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 2018, 9, 790.
[41]
Rahimi, S.; Moattari, R. M.; Rajabi, L.; Derakhshan, A. A.; Keyhani, M. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem. 2015, 23, 33-43.
[42]
Weckler, B.; Lutz, H. D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ). Eur. J. Solid State Inorg. Chem. 1998, 35, 531-544.
[43]
Li, N.; Zhi, C. Y.; Zhang, H. Y. High-performance transparent and flexible asymmetric supercapacitor based on graphene-wrapped amorphous FeOOH nanowire and Co(OH)2 nanosheet transparent films produced at air-water interface. Electrochim. Acta 2016, 220, 618-627.
[44]
Chen, R.; Puri, I. K.; Zhitomirsky, I. Polypyrrole-carbon nanotube-FeOOH composites for negative electrodes of asymmetric supercapacitors. J. Electrochem. Soc. 2019, 166, A935-A940.
[45]
Zhang, D. B.; Kong, X. G.; Jiang, M. H.; Lei, D. Q.; Lei, X. D. NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 4420-4428.
[46]
Chen, R.; Puri, I. K.; Zhitomirsky, I. High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors. Ceram. Int. 2018, 44, 18007-18015.
[47]
Liu, R.; Ma, L. N.; Niu, G. D.; Li, X. L.; Li, E. Y.; Bai, Y.; Liu, Y.; Yuan, G. H. Flexible Ti-doped FeOOH quantum dots/graphene/bacterial cellulose anode for high-energy asymmetric supercapacitors. Part. Part. Syst. Char. 2017, 34, 1700213.
[48]
Liang, X.; Long, G. H.; Fu, C. W.; Pang, M. J.; Xi, Y. L.; Li, J. Z.; Han, W.; Wei, G. D.; Ji, Y. High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 2018, 345, 186-195.
[49]
Liang, H. F.; Xia, C.; Emwas, A. H.; Anjum, D. H.; Miao, X. H.; Alshareef, H. N. Phosphine plasma activation of α-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy 2018, 49, 155-162.
[50]
Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390-397.
[51]
Zhao, J.; Li, Z. J.; Yuan, X. C.; Yang, Z.; Zhang, M.; Meng, A.; Li, Q. D. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 2018, 8, 1702787.
[52]
Zhang, G. W.; Yao, H.; Zhang, F.; Gao, Z. T.; Li, Q. J.; Yang, Y. Y.; Lu, X. H. A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Res. 2019, 12, 1061-1069.
Nano Research
Pages 759-767
Cite this article:
Li J, Luo S, Wang C, et al. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Research, 2020, 13(3): 759-767. https://doi.org/10.1007/s12274-020-2691-2
Topics:

777

Views

23

Crossref

N/A

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 21 November 2019
Revised: 07 January 2020
Accepted: 23 January 2020
Published: 24 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return