Journal Home > Volume 14 , Issue 2

The rational reticular design of metal-organic frameworks (MOFs) from building units of known geometries is essential for enriching the diversity of MOF structures. Unexpected and intriguing structures, however, can also arise from subtle changes in the rigidity/length of organic linkers and/or synthetic conditions. Herein, we report three uranium-based MOF structures—i.e., NU-135X (X = 0, 1, 2)—synthesized from trigonal planar uranyl nodes and triptycene-based hexacarboxylate ligands with variable arm lengths. A new chiral 3,6-connected nuc net was observed in NU-1350, while the extended versions of the ligand led to 3-fold catenated MOFs (NU-1351 and NU-1352) with rare 3,6-connected cml-c3 nets. The differences in the topology of NU-1350 and NU-1351/NU-1352 could be attributed to the slight distortions of the shorter linker in the former from the ideal trigonal prism geometry to an octahedral geometry when coordinated to the trigonal planar uranyl nodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reticular exploration of uranium-based metal-organic frameworks with hexacarboxylate building units

Show Author's information Zhijie Chen1,( )Penghao Li1Xuan Zhang1Mohammad Rasel Mian1Xingjie Wang1Peng Li1Zhichang Liu1Michael O’Keeffe2J. Fraser Stoddart1,3,4Omar K. Farha1,5,( )
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Tianjin 300072, China
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA

Abstract

The rational reticular design of metal-organic frameworks (MOFs) from building units of known geometries is essential for enriching the diversity of MOF structures. Unexpected and intriguing structures, however, can also arise from subtle changes in the rigidity/length of organic linkers and/or synthetic conditions. Herein, we report three uranium-based MOF structures—i.e., NU-135X (X = 0, 1, 2)—synthesized from trigonal planar uranyl nodes and triptycene-based hexacarboxylate ligands with variable arm lengths. A new chiral 3,6-connected nuc net was observed in NU-1350, while the extended versions of the ligand led to 3-fold catenated MOFs (NU-1351 and NU-1352) with rare 3,6-connected cml-c3 nets. The differences in the topology of NU-1350 and NU-1351/NU-1352 could be attributed to the slight distortions of the shorter linker in the former from the ideal trigonal prism geometry to an octahedral geometry when coordinated to the trigonal planar uranyl nodes.

Keywords: reticular chemistry, uranium-based metal-organic frameworks (MOFs), hexacarboxylate, 3,6-connected net, catenation, actinide

References(41)

[1]
O. M. Yaghi,; M. O'Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[2]
O. M. Yaghi,; M. J. Kalmutzki,; C. S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2019.
DOI
[3]
M. Li,; D. Li,; M. O’Keeffe,; O. M. Yaghi, Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343-1370.
[4]
Z. J. Chen,; H. Jiang,; M. O’Keeffe,; M. Eddaoudi, Minimal edge-transitive nets for the design and construction of metal-organic frameworks. Faraday Discuss. 2017, 201, 127-143.
[5]
Z. J. Chen,; Ł. J. Weseliński,; K. Adil,; Y. Belmabkhout,; A. Shkurenko,; H. Jiang,; P. M. Bhatt,; V. Guillerm,; E. Dauzon,; D. X. Xue, et al. Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net. J. Am. Chem. Soc. 2017, 139, 3265-3274.
[6]
Z. J. Chen,; S. L. Hanna,; L. R. Redfern,; D. Alezi,; T. Islamoglu,; O. K. Farha, Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 2019, 386, 32-49.
[7]
H. Jiang,; J. T. Jia,; A. Shkurenko,; Z. J. Chen,; K. Adil,; Y. Belmabkhout,; L. J. Weselinski,; A. H. Assen,; D. X. Xue,; M. O’Keeffe, et al. Enriching the reticular chemistry repertoire: Merged nets approach for the rational design of intricate mixed-linker metal-organic framework platforms. J. Am. Chem. Soc. 2018, 140, 8858-8867.
[8]
O. Delgado-Friedrichs,; M. O’Keeffe,; O. M. Yaghi, Three-periodic nets and tilings: Edge-transitive binodal structures. Acta Cryst. A 2006, 62, 350-355.
[9]
M. O’Keeffe,; M. A. Peskov,; S. J. Ramsden,; O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782-1789.
[10]
X. Zhang,; Z. Y. Huang,; M. Ferrandon,; D. L. Yang,; L. Robison,; P. Li,; T. C. Wang,; M. Delferro,; O. K. Farha, Catalytic chemoselective functionalization of methane in a metal-organic framework. Nat. Catal. 2018, 1, 356-362.
[11]
H. Kim,; S. Yang,; S. R. Rao,; S. Narayanan,; E. A. Kapustin,; H. Furukawa,; A. S. Umans,; O. M. Yaghi,; E. N. Wang, Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430-434.
[12]
H. Li,; K. C. Wang,; Y. J. Sun,; C. T. Lollar,; J. L. Li,; H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108-121.
[13]
X. L. Cui,; K. J. Chen,; H. B. Xing,; Q. W. Yang,; R. Krishna,; Z. B. Bao,; H. Wu,; W. Zhou,; X. L. Dong,; Y. Han, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141-144.
[14]
K. Adil,; Y. Belmabkhout,; R. S. Pillai,; A. Cadiau,; P. M. Bhatt,; A. H. Assen,; G. Maurin,; M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402-3430.
[15]
H. K. Chae,; D. Y. Siberio-Pérez,; J. Kim,; Y. Go,; M. Eddaoudi,; A. J. Matzger,; M. O'Keeffe,; O. M. Yaghi,; M. Design,; D. Group, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523-527.
[16]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. Ö. Yazaydin,; R. Q. Snurr,; M. O’Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[17]
Y. L. Wang,; Z. Y. Liu,; Y. X. Li,; Z. L. Bai,; W. Liu,; Y. X. Wang,; X. M. Xu,; C. Q. Xiao,; D. P. Sheng,; J. Diwu, et al. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 2015, 137, 6144-6147.
[18]
S. E. Gilson,; P. Li,; J. E. S. Szymanowski,; J. White,; D. Ray,; L. Gagliardi,; O. K. Farha,; P. C. Burns, In situ formation of unprecedented neptunium-oxide wheel clusters stabilized in a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 11842-11846.
[19]
P. Li,; S. Goswami,; K. I. Otake,; X. J. Wang,; Z. J. Chen,; S. L. Hanna,; O. K. Farha, Stabilization of an unprecedented hexanuclear secondary building unit in a thorium-based metal-organic framework. Inorg. Chem. 2019, 58, 3586-3590.
[20]
E. A. Dolgopolova,; A. M. Rice,; N. B. Shustova, Actinide-based MOFs: A middle ground in solution and solid-state structural motifs. Chem. Commun. 2018, 54, 6472-6483.
[21]
K. Q. Hu,; Z. W. Huang,; Z. H. Zhang,; L. Mei,; B. B. Qian,; J. P. Yu,; Z. F. Chai,; W. Q. Shi, Actinide-based porphyrinic MOF as a dehydrogenation catalyst. Chem.—Eur. J. 2018, 24, 16766-16769.
[22]
S. L. Hanna,; X. Zhang,; K. I. Otake,; R. J. Drout,; P. Li,; T. Islamoglu,; O. K. Farha, Guest-dependent single-crystal-to-single-crystal phase transitions in a two-dimensional uranyl-based metal-organic framework. Cryst. Growth Des. 2019, 19, 506-512.
[23]
Y. L. Wang,; W. Liu,; Z. L. Bai,; T. Zheng,; M. A. Silver,; Y. X. Li,; Y. X. Wang,; X. Wang,; J. Diwu,; Z. F. Chai, et al. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew. Chem., Int. Ed. 2018, 57, 5783-5787.
[24]
Y. X. Li,; Z. X. Yang,; Y. L. Wang,; Z. L. Bai,; T. Zheng,; X. Dai,; S. T. Liu,; D. X. Gui,; W. Liu,; M. Chen, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 2017, 8, 1354.
[25]
Y. X. Wang,; X. M. Yin,; W. Liu,; J. Xie,; J. F. Chen,; M. A. Silver,; D. P. Sheng,; L. H. Chen,; J. Diwu,; N. Liu, et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem., Int. Ed. 2018, 57, 7883-7887.
[26]
J. Xie,; Y. X. Wang,; W. Liu,; X. M. Yin,; L. H. Chen,; Y. M. Zou,; J. Diwu,; Z. F. Chai,; T. E. Albrecht-Schmitt,; G. K. Liu, et al. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem., Int. Ed. 2017, 56, 7500-7504.
[27]
P. Li,; N. A. Vermeulen,; C. D. Malliakas,; D. A. Gómez-Gualdrón,; A. J. Howarth,; B. L. Mehdi,; A. Dohnalkova,; N. D. Browning,; M. O’Keeffe,; O. K. Farha, Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 2017, 356, 624-627.
[28]
Z. J. Chen,; P. H. Li,; X. Zhang,; P. Li,; M. C. Wasson,; T. Islamoglu,; J. F. Stoddart,; O. K. Farha, Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc. 2019, 141, 2900-2905.
[29]
Z. J. Chen,; P. H. Li,; X. J. Wang,; K. I. Otake,; X. Zhang,; L. Robison,; A. Atilgan,; T. Islamoglu,; M. G. Hall,; G. W. Peterson, et al. Ligand-directed reticular synthesis of catalytically active missing zirconium-based metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 12229-12235.
[30]
D. X. Xue,; A. J. Cairns,; Y. Belmabkhout,; L. Wojtas,; Y. L. Liu,; M. H. Alkordi,; M. Eddaoudi, Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 2013, 135, 7660-7667.
[31]
V. A. Blatov,; A. P. Shevchenko,; D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586.
[32]
P. H. Li,; P. Li,; M. R. Ryder,; Z. C. Liu,; C. L. Stern,; O. K. Farha,; J. F. Stoddart, Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1664-1669.
[33]
H. K. Chae,; M. Eddaoudi,; J. Kim,; S. I. Hauck,; J. F. Hartwig,; M. O'Keeffe,; O. M. Yaghi, Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 2001, 123, 11482-11483.
[34]
J. T. Jia,; F. X. Sun,; Q. R. Fang,; X. Q. Liang,; K. Cai,; Z. Bian,; H. J. Zhao,; L. X. Gao,; G. S. Zhu, A novel low density metal-organic framework with pcu topology by dendritic ligand. Chem. Commun. 2011, 47, 9167-9169.
[35]
O. Delgado Friedrichs,; M. O'Keeffe,; O. M. Yaghi, Three-periodic nets and tilings: regular and quasiregular nets. Acta Cryst. A 2003, 59, 22-27.
[36]
C. M. Liu,; J. L. Zuo,; D. Q. Zhang,; D. B. Zhu, Carboxylic acid-dependent assembly of neodymium-organic frameworks with attractive topologies and second-order nonlinear optical and/or magnetic properties. CrystEngComm 2008, 10, 1674-1680.
[37]
P. H. Li,; Z. J. Chen,; M. R. Ryder,; C. L. Stern,; Q. H. Guo,; X. J. Wang,; O. K. Farha,; J. F. Stoddart, Assembly of a porous supramolecular polyknot from rigid trigonal prismatic building blocks. J. Am. Chem. Soc. 2019, 141, 12998-13002.
[38]
S. Yuan,; W. G. Lu,; Y. P. Chen,; Q. Zhang,; T. F. Liu,; D. W. Feng,; X. Wang,; J. S. Qin,; H. C. Zhou, Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 3177-3180.
[39]
Y. Y. Zhang,; X. Zhang,; J. F. Lyu,; K. I. Otake,; X. J. Wang,; L. R. Redfern,; C. D. Malliakas,; Z. Y. Li,; T. Islamoglu,; B. Wang, et al. A flexible metal-organic framework with 4-connected Zr6 nodes. J. Am. Chem. Soc. 2018, 140, 11179-11183.
[40]
V. Guillerm,; T. Grancha,; I. Imaz,; J. Juanhuix,; D. Maspoch, Zigzag ligands for transversal design in reticular chemistry: Unveiling new structural opportunities for metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 10153-10157.
[41]
P. Chandrasekhar,; G. Savitha,; J. N. Moorthy, Robust MOFs of “tsg” topology based on trigonal prismatic organic and metal cluster SBUs: Single crystal to single crystal postsynthetic metal exchange and selective CO2 capture. Chem.—Eur. J. 2017, 23, 7297-7305.
File
12274_2020_2690_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 November 2019
Revised: 24 December 2019
Accepted: 17 January 2020
Published: 28 February 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

O. K. F. acknowledges the support from the U.S. Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0003763. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI- 1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work made use of the IMSERC at Northwestern University, which has received support from the NSF (CHE-1048773 and DMR0521267); Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI- 1542205); the State of Illinois and International Institute for Nanotechnology (IIN). P. L. and J. F. S. acknowledge the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdulaziz City for Science and Technology (KACST) and Northwestern University (NU).

Return