Journal Home > Volume 13 , Issue 3

Single atom catalyst is of great importance for the oxygen reduction reaction (ORR). However, facile preparation of single atom catalyst without using well-designed precursors or labor-intensive acid leaching remains an urgent challenge. Herein, a simple pyrolysis of Fe3+-loaded mesoporous phenolic resin (mPF)-melamine precursor is used to prepare the single atom iron-anchored N-doped mesoporous graphitic carbon nanospheres (Fe/N-MGN). Investigation of the synthesis reveals the appropriate Fe-assisted catalysis effect and mPF template effect, which not only spurs the highly graphitic porous framework of Fe/N-MGN with plentiful pyridinic N/graphitic N, but also assures the dispersed single atom Fe anchoring without elaborated procedures. As a result, the as-synthesized Fe/N-MGN demonstrates high catalytic activity, good durability and excellent methanol tolerance for ORR. This work promises a facile method to regulate the graphitic carbon growth and single atom Fe loading for the highly efficient electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction

Show Author's information Yunshi Xu1Liping Zhu1Xuexue Cui1Mingyu Zhao1Yaling Li1Leilei Chen1,2Weicun Jiang1Ting Jiang1Shuguang Yang1Yi Wang1,2( )
Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

Abstract

Single atom catalyst is of great importance for the oxygen reduction reaction (ORR). However, facile preparation of single atom catalyst without using well-designed precursors or labor-intensive acid leaching remains an urgent challenge. Herein, a simple pyrolysis of Fe3+-loaded mesoporous phenolic resin (mPF)-melamine precursor is used to prepare the single atom iron-anchored N-doped mesoporous graphitic carbon nanospheres (Fe/N-MGN). Investigation of the synthesis reveals the appropriate Fe-assisted catalysis effect and mPF template effect, which not only spurs the highly graphitic porous framework of Fe/N-MGN with plentiful pyridinic N/graphitic N, but also assures the dispersed single atom Fe anchoring without elaborated procedures. As a result, the as-synthesized Fe/N-MGN demonstrates high catalytic activity, good durability and excellent methanol tolerance for ORR. This work promises a facile method to regulate the graphitic carbon growth and single atom Fe loading for the highly efficient electrocatalysis.

Keywords: mesoporous structure, oxygen reduction reaction (ORR), single atom, graphitic carbon nanosphere, in-situ transformation

References(36)

[1]
Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302-2312.
[2]
Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.
[3]
Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.
[4]
Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater. 2018, 8, 1801478.
[5]
Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-Air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.
[6]
Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692-12697.
[7]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[8]
Tan, H. B.; Tang, J.; Henzie, J.; Li, Y. Q.; Xu, X. T.; Chen, T.; Wang, Z. L.; Wang, J. Y.; Ide, Y.; Bando, Y. et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 2018, 12, 5674-5683.
[9]
Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371-1397.
[10]
Patera, L. L.; Bianchini, F.; Africh, C.; Dri, C.; Soldano, G.; Mariscal, M. M.; Peressi, M.; Comelli, G. Real-time imaging of adatom-promoted graphene growth on nickel. Science 2018, 359, 1243-1246.
[11]
Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
[12]
Shi, R.; Tian, C. C.; Zhu, X.; Peng, C. Y.; Mei, B. B.; He, L.; Du, X. L.; Jiang, Z.; Chen, Y.; Dai, S. Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chem. Sci. 2019, 10, 2585-2591.
[13]
Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.
[14]
Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E. S.; Jia, Q. Y.; Fan, W. J.; Wang, G. G.; Dang, D.; Li, M. S. et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/ fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 2019, 7, 5020-5030.
[15]
Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. The MOF+ technique: A significant synergic effect enables high performance chromate removal. Angew. Chem., Int. Ed. 2017, 56, 16376-16379.
[16]
Qiu, F.; Edison, J. R.; Preisler, Z.; Zhang, Y. F.; Li, G.; Pan, A. Z.; Hsu, C. H.; Mattox, T. M.; Ercius, P.; Song, C. Y. et al. Design rules for self-assembly of 2D nanocrystal/metal-organic framework superstructures. Angew. Chem., Int. Ed. 2018, 57, 13172-13176.
[17]
Li, J. C.; Xiao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal. 2019, 9, 5929-5934.
[18]
Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824-2832.
[19]
Wang, N.; Lu, B. Z.; Li, L. G.; Niu, W. H.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: Insights from activity attenuation studies and theoretical calculations. ACS Catal. 2018, 8, 6827-6836.
[20]
An, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
[21]
Tarutani, N.; Tokudome, Y.; Jobbágy, M.; Soler-Illia, G. J. A. A.; Tang, Q. Y.; Müller, M.; Takahashi, M. Highly ordered mesoporous hydroxide thin films through self-assembly of size-tailored nanobuilding blocks: A theoretical-experimental approach. Chem. Mater. 2019, 31, 322-330.
[22]
Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525-8529.
[23]
Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073-7080.
[24]
Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594-11598.
[25]
Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Tian, G. Y.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 2019, 31, 3274-3280.
[26]
Huang, Z.; Pan, H. Y.; Yang, W. J.; Zhou, H. H.; Gao, N.; Fu, C. P.; Li, S. C.; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 2018, 12, 208-216.
[27]
Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707-6712.
[28]
Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.
[29]
Rownaghi, A. A.; Rezaei, F.; Stante, M.; Hedlund, J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl. Catal. B Environ. 2012, 119-120, 56-61.
[30]
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259-268.
[31]
Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.
[32]
Khannanov, A.; Kiiamov, A.; Valimukhametova, A.; Tayurskii, D. A.; Börrnert, F.; Kaiser, U.; Eigler, S.; Vagizov, F. G.; Dimiev, A. M. γ-Iron phase stabilized at room temperature by thermally processed graphene oxide. J. Am. Chem. Soc. 2018, 140, 9051-9055.
[33]
Kim, H. W.; Park, H.; Roh, J. S.; Shin, J. E.; Lee, T. H.; Zhang, L.; Cho, Y. H.; Yoon, H. W.; Bukas, V. J.; Guo, J. H. et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction. Chem. Mater. 2019, 31, 3967-3973.
[34]
Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.
[35]
Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174.
[36]
Sakaushi, K.; Eckardt, M.; Lyalin, A.; Taketsugu, T.; Behm, R. J.; Uosaki, K. Microscopic electrode processes in the four-electron oxygen reduction on highly active carbon-based electrocatalysts. ACS Catal. 2018, 8, 8162-8176.
File
12274_2020_2689_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2019
Revised: 18 December 2019
Accepted: 18 January 2020
Published: 22 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 21675032 and 81861138040), the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program. We appreciate the kind help from Dr. Li Wang in Center of Analysis and Measurement, Fudan University for preparation of complicated samples and elemental analysis.

Return