Journal Home > Volume 13 , Issue 3

Insights into the pharmacologic effect on cellular processes and the potential toxicological effects are vital to new drug development and evaluation, yet research on these subjects remains a great challenge due to the lack of information regarding the spatiotemporal distribution of drugs and metabolites within a single cell. Mass spectrometry imaging (MSI) has proven to be a label-free and high-throughput approach for visualizing drug distribution in spatial and temporal domains. However, single-cell drug imaging has been limited so far by detection sensitivity and microscale lateral resolution. Herein, we report near-field laser desorption/laser postionization mass spectrometry (NDPI-MS) for single-cell imaging of two structurally similar drugs, proflavine and ethacridine, and subcellular distributions of proflavine at different drug concentrations were investigated. The NDPI-MS imaging results indicate that proflavine was accumulated in lysosomes, which was verified by laser scanning confocal microscopy (LSCM). Additionally, a distinguished subcellular distribution pattern of ethacridine from proflavine could be visualized, highlighting the complexity of the interaction between the drugs and biological environment even though these two drugs possess similar structures. Taken together, the present results demonstrate the great potential of the integrated single-cell MSI platform for characterizing the drug distribution and its phenotype changes within individual cells, expediting the identification and evaluation of newly developed drugs.


menu
Abstract
Full text
Outline
About this article

Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry

Show Author's information Xiaoling Cheng1,§Zhibin Yin1,§Liu Rong1Wei Hang1,2( )
Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

§ Xiaoling Cheng and Zhibin Yin contributed equally to this work.

Abstract

Insights into the pharmacologic effect on cellular processes and the potential toxicological effects are vital to new drug development and evaluation, yet research on these subjects remains a great challenge due to the lack of information regarding the spatiotemporal distribution of drugs and metabolites within a single cell. Mass spectrometry imaging (MSI) has proven to be a label-free and high-throughput approach for visualizing drug distribution in spatial and temporal domains. However, single-cell drug imaging has been limited so far by detection sensitivity and microscale lateral resolution. Herein, we report near-field laser desorption/laser postionization mass spectrometry (NDPI-MS) for single-cell imaging of two structurally similar drugs, proflavine and ethacridine, and subcellular distributions of proflavine at different drug concentrations were investigated. The NDPI-MS imaging results indicate that proflavine was accumulated in lysosomes, which was verified by laser scanning confocal microscopy (LSCM). Additionally, a distinguished subcellular distribution pattern of ethacridine from proflavine could be visualized, highlighting the complexity of the interaction between the drugs and biological environment even though these two drugs possess similar structures. Taken together, the present results demonstrate the great potential of the integrated single-cell MSI platform for characterizing the drug distribution and its phenotype changes within individual cells, expediting the identification and evaluation of newly developed drugs.

Keywords: mass spectrometry, near-field, acridine drugs, single cell imaging, laser postionization

References(45)

[1]
Dollery, C. T. Intracellular drug concentrations. Clin. Pharmacol. Ther. 2013, 93, 263-266.
[2]
Horobin, R. W.; Stockert, J. C.; Rashid-Doubell, F. Fluorescent cationic probes for nuclei of living cells: Why are they selective? A quantitative structure-activity relations analysis. Histochem. Cell Biol. 2006, 126, 165-175.
[3]
Li, Q.; Zhou, T.; Wu, F.; Li, N.; Wang, R.; Zhao, Q.; Ma, Y. M.; Zhang, J. Q.; Ma, B. L. Subcellular drug distribution: Mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab. Rev. 2018, 50, 430-447.
[4]
Heath, J. R.; Ribas, A.; Mischel, P. S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 2016, 15, 204-216.
[5]
Chen, J. X.; Hu, Y. J.; Lu, Q.; Wang, P. C.; Zhan, H. Q. Molecular imaging of small molecule drugs in animal tissues using laser desorption postionization mass spectrometry. Analyst 2017, 142, 1119-1124.
[6]
Lietz, C. B.; Gemperline, E.; Li, L. J. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv. Drug Deliv. Rev. 2013, 65, 1074-1085.
[7]
Prideaux, B.; Stoeckli, M. Mass spectrometry imaging for drug distribution studies. J. Proteomics 2012, 75, 4999-5013.
[8]
Buchberger, A. R.; DeLaney, K.; Johnson, J.; Li, L. J. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal. Chem. 2018, 90, 240-265.
[9]
Wang, T. T.; Cheng, X. L.; Xu, H. X.; Meng, Y. F.; Yin, Z. B.; Li, X. P.; Hang, W. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal. Chem. 2020, 92, 543-553.
[10]
Prideaux, B.; Via, L. E.; Zimmerman, M. D.; Eum, S.; Sarathy, J.; O'Brien, P.; Chen, C.; Kaya, F.; Weiner, D. M.; Chen, P. Y. et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 2015, 21, 1223-1227.
[11]
Dueñas, M. E.; Essner, J. J.; Lee, Y. J. 3D MALDI mass spectrometry imaging of a single cell: Spatial mapping of lipids in the embryonic development of zebrafish. Sci. Rep. 2017, 7, 14946.
[12]
Kuznetsov, I.; Filevich, J.; Dong, F.; Woolston, M.; Chao, W.; Anderson, E. H.; Bernstein, E. R.; Crick, D. C.; Rocca, J. J.; Menoni, C. S. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry. Nat. Commun. 2015, 6, 6944.
[13]
Wang, J.; Wang, Z. Y.; Liu, F.; Cai, L. S.; Pan, J. B.; Li, Z. P.; Zhang, S. C.; Chen, H. Y.; Zhang, X. R.; Mo, Y. X. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Anal. Chem. 2018, 90, 10009-10015.
[14]
Passarelli, M. K.; Newman, C. F.; Marshall, P. S.; West, A.; Gilmore, I. S.; Bunch, J.; Alexander, M. R.; Dollery, C. T. Single-cell analysis: Visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal. Chem. 2015, 87, 6696-6702.
[15]
Passarelli, M. K.; Pirkl, A.; Moellers, R.; Grinfeld, D.; Kollmer, F.; Havelund, R.; Newman, C. F.; Marshall, P. S.; Arlinghaus, H.; Alexander, M. R. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 2017, 14, 1175-1183.
[16]
Yin, Z. B.; Cheng, X. L.; Liu, R.; Li, X. P.; Hang, L.; Hang, W.; Xu, J. Y.; Yan, X. M.; Li, J. F.; Tian, Z. Q. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem., Int. Ed. 2019, 58, 4541-4546.
[17]
Chen, J. X.; Hu, Y. J.; Lu, Q.; Wang, P. C.; Zhan, H. Q. Determination of proflavine in rat whole blood without sample pretreatment by laser desorption postionization mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2813-2819.
[18]
Ježek, J.; Hlaváček, J.; Šebestík, J. Introduction. In Biomedical Applications of Acridines: Derivatives, Syntheses, Properties and Biological Activities with a Focus on Neurodegenerative Diseases; Springer: Switzerland, 2017; pp 1-4.
[19]
Demeunynck, M. Antitumour acridines. Expert Opin. Ther. Pat. 2004, 14, 55-70.
[20]
Dyckhoff, G.; Plinkert, P. K.; Walk-Fritz, S. U.; Hoppe-Tichy, T. Malodorous oozing lesions after local cancer treatment-ethacridine powder prevents local infection. Drugs Ther. Stud. 2011, 1, e9.
[21]
Stöckle, R.; Fokas, C.; Deckert, V.; Zenobi, R.; Sick, B.; Hecht, B.; Wild, U. P. High-quality near-field optical probes by tube etching. Appl. Phys. Lett. 1999, 75, 160-162.
[22]
Liang, Z. S.; Yin, Z. B.; Yang, H.; Xiao, Y. F.; Hang, W.; Li, J. F. Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: A critical review. Trends Anal. Chem. 2016, 75, 24-34.
[23]
Liang, Z. S.; Zhang, S. D.; Li, X. P.; Wang, T. T.; Huang, Y. P.; Hang, W.; Yang, Z. L.; Li, J. F.; Tian, Z. Q. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis. Sci. Adv. 2017, 3, eaaq1059.
[24]
Lanni, E. J.; Rubakhin, S. S.; Sweedler, J. V. Mass spectrometry imaging and profiling of single cells. J. Proteomics 2012, 75, 5036-5051.
[25]
Yin, Z. B.; Xu, Z. Y.; Liu, R.; Hang, W.; Huang, B. L. Microtrace analysis of rare earth element residues in femtogram quantities by laser desorption and laser postionization mass spectrometry. Anal. Chem. 2017, 89, 7455-7461.
[26]
Yin, Z. B.; Cheng, X. L.; Liu, R.; Hang, W.; Huang, B. L. Depth profiling of nanometer thin layers by laser desorption and laser postionization time-of-flight mass spectrometry. J. Anal. At. Spectrom. 2017, 32, 1878-1884.
[27]
Heyde, M.; Sterrer, M.; Rust, H. P.; Freund, H. J. Atomic resolution on mgo(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Appl. Phys. Lett. 2005, 87, 083104.
[28]
Hoppe, S.; Ctistis, G.; Paggel, J. J.; Fumagalli, P. Reflection scanning near-field optical microscopy in ultrahigh vacuum. Rev. Sci. Instrum. 2005, 76, 063704.
[29]
Belmont, P.; Bosson, J.; Godet, T.; Tiano, M. Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anticancer Agents Med. Chem. 2007, 7, 139-169.
[30]
Kawada, H.; Inanobe, A.; Kurachi, Y. Isolation of proflavine as a blocker of g protein-gated inward rectifier potassium channels by a cell growth-based screening system. Neuropharmacology 2016, 109, 18-28.
[31]
Dreisewerd, K.; Yew, J. Y. Mass spectrometry imaging goes three dimensional. Nat. Methods 2017, 14, 1139-1140.
[32]
Kompauer, M.; Heiles, S.; Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat. Methods 2017, 14, 1156-1158.
[33]
Kazmi, F.; Hensley, T.; Pope, C.; Funk, R. S.; Loewen, G. J.; Buckley, D. B.; Parkinson, A. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab. Dispos. 2013, 41, 897-905.
[34]
Halliwell, W. H. Cationic amphiphilic drug-induced phospholipidosis. Toxicol. Pathol. 1997, 25, 53-60.
[35]
Zhitomirsky, B.; Assaraf, Y. G. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 2015, 6, 1143-1156.
[36]
Logan, R.; Kong, A.; Krise, J. P. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes. J. Pharm. Sci. 2013, 102, 4173-4180.
[37]
Kemp, S.; Wheate, N. J.; Stootman, F. H.; Aldrich-Wright, J. R. The host-guest chemistry of proflavine with cucurbit [6, 7, 8] urils. Supramol. Chem. 2007, 19, 475-484.
[38]
Hu, D. D.; Wang, L.; Lin, J.; Bu, F.; Wu, T. Tuning the efficiency of multi-step energy transfer in a host-guest antenna system based on a chalcogenide semiconductor zeolite through acidification and solvation of guests. J. Mater. Chem. C 2015, 3, 11747-11753.
[39]
Vater, M.; Möckl, L.; Gormanns, V.; Schultz Fademrecht, C.; Mallmann, A. M.; Ziegart-Sadowska, K.; Zaba, M.; Frevert, M. L.; Bräuchle, C.; Holsboer, F. et al. New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci. Rep. 2017, 7, 44277.
[40]
Logan, R.; Kong, A. C.; Axcell, E.; Krise, J. P. Amine-containing molecules and the induction of an expanded lysosomal volume phenotype: A structure-activity relationship study. J. Pharma. Sci. 2014, 103, 1572-1580.
[41]
Ufuk, A.; Somers, G.; Houston, J. B.; Galetin, A. In vitro assessment of uptake and lysosomal sequestration of respiratory drugs in alveolar macrophage cell line NR8383. Pharm. Res. 2015, 32, 3937-3951.
[42]
Wainwright, M. Acridine—A neglected antibacterial chromophore. J. Antimicrob. Chemoth. 2001, 47, 1-13.
[43]
Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed.; Wiley: New Jersey, 2012.
[44]
Liu, S. Y.; Zheng, W.; Wu, K.; Lin, Y.; Jia, F. F.; Zhang, Y.; Wang, Z. Y.; Luo, Q.; Zhao, Y.; Wang, F. Y. Correlated mass spectrometry and confocal microscopy imaging verifies the dual-targeting action of an organoruthenium anticancer complex. Chem. Commun. 2017, 53, 4136-4139.
[45]
Palarie, I.; Varut, M. C.; Chirigiu, L. M. E. Method of determination of rivanol by laser induced fluoroscence. Rev. Chim. 2019, 70, 140-142.
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2019
Revised: 15 January 2020
Accepted: 28 January 2020
Published: 22 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors are grateful for the national support received from the National Natural Science Foundation of China (Nos. 21974116 and 21427813).

Return