Journal Home > Volume 13 , Issue 5

The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes. From the perspective of mimicking active site microenvironment at low cost, we herein report a novel histidine-functionalized graphene quantum dot (His-GQD)/hemin complex, which exhibits the highest catalytic rate for the peroxidase-based chromogenic reaction among the hemin-containing mimetics reported so far. Also, our peroxidase mimetic shows excellent tolerance to strongly acidic conditions and can function in a wide temperature range. Lineweaver-Burk plots and comprehensive electron paramagnetic resonance analysis reveal a ping-pong type catalytic mechanism for this mimetic. In addition, His-GQD/hemin demonstrates high efficiency and accuracy in detecting H2O2 and blood glucose. Our work provides an effective design of artificial enzymes for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots

Show Author's information Qi Xin1,§Xinrui Jia1,2,§Asmat Nawaz1,2Wenjing Xie1Litao Li3Jian Ru Gong1,2( )
CAS Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem & Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Orthopaedics, the 309th Hospital of the PLA, Beijing 100091, China

§ Qi Xin and Xinrui Jia contributed equally to this work.

Abstract

The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes. From the perspective of mimicking active site microenvironment at low cost, we herein report a novel histidine-functionalized graphene quantum dot (His-GQD)/hemin complex, which exhibits the highest catalytic rate for the peroxidase-based chromogenic reaction among the hemin-containing mimetics reported so far. Also, our peroxidase mimetic shows excellent tolerance to strongly acidic conditions and can function in a wide temperature range. Lineweaver-Burk plots and comprehensive electron paramagnetic resonance analysis reveal a ping-pong type catalytic mechanism for this mimetic. In addition, His-GQD/hemin demonstrates high efficiency and accuracy in detecting H2O2 and blood glucose. Our work provides an effective design of artificial enzymes for practical applications.

Keywords: graphene quantum dot, nanoenzyme, heme active site, peroxidase mimetic, enzymatic microenvironment

References(40)

[1]
Garg, B.; Bisht, T.; Ling, Y. C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules 2015, 20, 14155-14190.
[2]
Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424-427.
[3]
Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988, 240, 433-439.
[4]
Gharibi, H.; Moosavi-Movahedi, Z.; Javadian, S.; Nazari, K.; Moosavi-Movahedi, A. A. Vesicular mixed gemini-SDS-hemin-imidazole complex as a peroxidase-like nano artificial enzyme. J. Phys. Chem. B 2011, 115, 4671-4679.
[5]
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 2014, 114, 3919-3962.
[6]
Veitch, N. C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 2004, 65, 249-259.
[7]
Sang, Y. J.; Huang, Y. Y.; Li, W.; Ren, J. S.; Qu, X. G. Bioinspired design of Fe3+-doped mesoporous carbon nanospheres for enhanced nanozyme activity. Chem.—Eur. J. 2018, 24, 7259-7263.
[8]
Castriciano, M. A.; Romeo, A.; Baratto, M. C.; Pogni, R.; Scolaro, L. M. Supramolecular mimetic peroxidase based on hemin and PAMAM dendrimers. Chem. Commun. 2008, 688-690.
[9]
Yang, D. K.; Kuo, C. J.; Chen, L. C. Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Anal. Chim. Acta 2015, 856, 96-102.
[10]
Wang, X. Q.; Wang, C.; Pan, M. H.; Wei, J. T.; Jiang, F. P.; Lu, R. S.; Liu, X.; Huang, Y. H.; Huang, F. Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl. Mater. Interfaces 2017, 9, 25387-25396.
[11]
Villarino, L.; Splan, K. E.; Reddem, E.; Alonso-Cotchico, L.; Gutierrez De Souza, C.; Lledós, A.; Maréchal, J. D.; Thunnissen, A. M. W. H.; Roelfes, G. An artificial heme enzyme for cyclopropanation reactions. Angew. Chem., Int. Ed .2018, 57, 7785-7789.
[12]
Chen, K.; Wu, C. D. Designed fabrication of biomimetic metal- organic frameworks for catalytic applications. Coord. Chem. Rev. 2019, 378, 445-465.
[13]
Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282-1290.
[14]
Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C. Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem., Int. Ed .2012, 124, 3888-3891.
[15]
Li, Y. J.; Huang, X. Q.; Li, Y. J.; Xu, Y. X.; Wang, Y.; Zhu, E. B.; Duan, X. F.; Huang, Y. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Sci. Rep. 2013, 3, 1787.
[16]
Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J.. S; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed .2015, 54, 7176-7180.
[17]
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
[18]
Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.
[19]
Singh, S.; Mitra, K.; Singh, R.; Kumari, A.; Sen upta, S. K.; Misra, N.; Maiti, P.; Ray, B. Colorimetric detection of hydrogen peroxide and glucose using brominated graphene. Anal. Methods 2017, 9, 6675-6681.
[20]
Hu, Y. H.; Gao, X. J. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30, 6431-6439.
[21]
Zhu, S. Y.; Zhao, X. E.; You, J. M.; Xu, G. B.; Wang, H. Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst 2015, 140, 6398-6403.
[22]
Xin, Q.; Liu, Q.; Geng, L. L.; Fang, Q. J.; Gong, J. R. Chiral nanoparticle as a new efficient antimicrobial nanoagent. Adv. Healthc. Mater. 2017, 6, 1601011.
[23]
Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
[24]
Sun, H. J.; Wu, L.; Wei, W. L.; Qu, X. G. Recent advances in graphene quantum dots for sensing. Mater. Today 2013, 16, 433-442.
[25]
Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem., Int. Ed. 2007, 46, 4285-4289.
[26]
Wei, J. H.; Qiu, J. J.; Li, L.; Ren, L. Q.; Zhang, X. W.; Chaudhuri, J.; Wang, S. E. A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Nanotechnology 2012, 23, 335707.
[27]
Ryabova, E. S.; Dikiy, A.; Hesslein, A. E.; Bjerrum, M. J.; Ciurli, S.; Nordlander, E. Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. J. Biol. Inorg. Chem. 2004, 9, 385-395.
[28]
Kersten, P. J.; Kalyanaraman, B.; Hammel, K. E.; Reinhammar, B.; Kirk, T. K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 1990, 268, 475-480.
[29]
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506-1520.
[30]
Radika, K.; Northrop, D. A new kinetic diagnostic for enzymatic mechanisms using alternative substrates. Anal. Biochem. 1984, 141, 413-417.
[31]
Qin, F. Q.; Jia, S. Y.; Wang, F. F.; Wu, S. H.; Songa, J.; Liu, Y. Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal. Sci. Technol. 2013, 3, 2761-2768.
[32]
Chen, Q.; Chen, J.; Gao, C. J.; Zhang, M. L.; Chen, J. Y.; Qiu, H. D. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 2015, 140, 2857-2863.
[33]
Li, D. L.; Wu, S. H.; Wang, F. F.; Jia, S. Y.; Liu, Y.; Han, X.; Zhang, L. W.; Zhang, S. L.; Wu, Y. M. A facile one-pot synthesis of hemin/ ZIF-8 composite as mimetic peroxidase. Mater. Lett. 2016, 178, 48-51.
[34]
Todd, M. J.; Gomez, J. Enzyme kinetics determined using calorimetry: A general assay for enzyme activity? Anal. Biochem. 2001, 296, 179-187.
[35]
Wang, H.; Liu, C. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics. Small 2018, 14, 1703710.
[36]
Peisach, J.; Blumberg, W. E. Low-temperature epr studies of the effects of protein conformation on the symmetry of heme in high-spin ferriheme proteins. In Structure and Function of Oxidation-Reduction Enzymes; Åkeson, Å.; Ehrenberg, A., Eds.; Academic Press: New York, San Francisco, London, 1972; pp 191-203.
[37]
Nistor, S. V.; Goovaerts, E.; Van Doorslaer, S.; Dewilde, S.; Moens, L. EPR-spectroscopic evidence of a dominant His-FeIII-His coordination in ferric neuroglobin. Chem. Phys. Lett. 2002, 361, 355-361.
[38]
Hayashi, T.; Murata, D.; Makino, M.; Sugimoto, H.; Matsuo, T.; Sato, H.; Shiro, Y.; Hisaeda, Y. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene. Inorg. Chem. 2006, 45, 10530-10536.
[39]
Kitagishi, H.; Tamaki, M.; Ueda, T.; Hirota, S.; Ohta, T.; Naruta, Y.; Kano, K. Oxoferryl porphyrin/hydrogen peroxide system whose behavior is equivalent to hydroperoxoferric porphyrin. J. Am. Chem. Soc. 2010, 132, 16730-16732.
[40]
Rodríguez-López, J. N.; Lowe, D. J.; Hernández-Ruiz, J.; Hiner, A. N. P.; García-Cánovas, F.; Thorneley, R. N. F. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: Identification of intermediates in the catalytic cycle. J. Am. Chem. Soc. 2001, 123, 11838-11847.
File
12274_2020_2678_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2019
Revised: 05 January 2020
Accepted: 26 January 2020
Published: 20 February 2020
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge financial support for this work from the National Key R&D Program "nanotechnology" special focus (No. 2016YFA0201600), the National Natural Science Foundation of China (Nos. 21422303, 21573049, 21872043, and 81602643), Beijing Natural Science Foundation (No. 2142036), and the Knowledge Innovation Program, Youth Innovation Promotion Association, and Special Program of "One Belt One Road" of CAS. The authors thank Dr. Dexing Li for the technique support and many helpful discussions for the ITC testing.

Return