Journal Home > Volume 13 , Issue 3

Herein, the core-shell structured N-doped carbon coated Fe7S8 nano-aggregates (Fe7S8@NC) were controllably prepared via a simple three-step synthesis strategy. The appropriate thickness of N-doped carbon layer outside Fe7S8 nano-aggregates can not only inhibit the particle pulverization induced by the big volume changes of Fe7S8, but can increase the electron transfer efficiency. The hierarchical Fe7S8 nano-aggregates composed of some primary nanoparticles can accelerate the lithium or sodium diffusion kinetics. As anode materials for Li-ion batteries (LIBs), the well-designed Fe7S8@NC nanocomposites exhibit outstanding lithium storage performance, which is better than that of pure Fe7S8, Fe3O4@NC and Fe7S8@C. Among these nanocomposites, the N-doped carbon coated Fe7S8 with carbon content of 26.87 wt.% shows a high reversible specific capacity of 833 mAh·g-1 after 1,000 cycles at a high current density of 2 A·g-1. The above electrode also shows excellent high rate sodium storage performance. The experimental and theoretical analyses indicate that the outstanding electrochemical performance could be attributed to the synergistic effect of hierarchical Fe7S8 nanostructure and conductive N-doped carbon layer. The quantitative kinetic analysis indicates that the charge storage of Fe7S8@NC electrode is a combination of diffusion-controlled battery behavior and surface-induced capacitance behavior.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pseudocapacitance boosted N-doped carbon coated Fe7S8 nano-aggregates as promising anode materials for lithium and sodium storage

Show Author's information Yanli Zhou1Ming Zhang1Qi Wang1Jian Yang2Xingyun Luo3Yanlu Li3Rong Du1Xinsheng Yan1Xueqin Sun1Caifu Dong1Xiaoyu Zhang1Fuyi Jiang1( )
School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Institute of Crystal Materials and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

Abstract

Herein, the core-shell structured N-doped carbon coated Fe7S8 nano-aggregates (Fe7S8@NC) were controllably prepared via a simple three-step synthesis strategy. The appropriate thickness of N-doped carbon layer outside Fe7S8 nano-aggregates can not only inhibit the particle pulverization induced by the big volume changes of Fe7S8, but can increase the electron transfer efficiency. The hierarchical Fe7S8 nano-aggregates composed of some primary nanoparticles can accelerate the lithium or sodium diffusion kinetics. As anode materials for Li-ion batteries (LIBs), the well-designed Fe7S8@NC nanocomposites exhibit outstanding lithium storage performance, which is better than that of pure Fe7S8, Fe3O4@NC and Fe7S8@C. Among these nanocomposites, the N-doped carbon coated Fe7S8 with carbon content of 26.87 wt.% shows a high reversible specific capacity of 833 mAh·g-1 after 1,000 cycles at a high current density of 2 A·g-1. The above electrode also shows excellent high rate sodium storage performance. The experimental and theoretical analyses indicate that the outstanding electrochemical performance could be attributed to the synergistic effect of hierarchical Fe7S8 nanostructure and conductive N-doped carbon layer. The quantitative kinetic analysis indicates that the charge storage of Fe7S8@NC electrode is a combination of diffusion-controlled battery behavior and surface-induced capacitance behavior.

Keywords: N-doped carbon, anode materials, Na-ion batteries, Li-ion batteries, Fe7S8

References(51)

[1]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
[2]
Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.
[3]
Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051-3058.
[4]
Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 1993, 140, 2490-2498.
[5]
Zhang, Z. J.; Zhao, H. L.; Du, Z. H.; Chang, X. W.; Zhao, L. N.; Du, X. F.; Li, Z. L.; Teng, Y. Q.; Fang, J. J.; Świerczek, K. (101) plane-oriented SnS2 nanoplates with carbon coating: A high-rate and cycle-stable anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35880-35887.
[6]
Zhou, Y. L.; Tian, J.; Xu, H. Y.; Yang, J.; Qian, Y. T. VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater. 2017, 6, 149-156.
[7]
Li, Z. Y.; Ottmann, A.; Zhang, T.; Sun, Q.; Meyer, H. P.; Vaynzof, Y.; Xiang J. H.; Klingeler, R. Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J. Mater. Chem. A 2017, 5, 3987-3994.
[8]
Fang, Y.; Lv, Y. Y.; Gong, F.; Elzatahry, A. A.; Zheng, G. F.; Zhao, D. Y. Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 2016, 28, 9385-9390.
[9]
Xie, J. J.; Liu, L.; Xia, J.; Zhang, Y.; Li, M.; Ouyang, Y.; Nie, S.; Wang, X. Y. Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 2018, 10, 12.
[10]
Jiang, F. Y.; Wang, Q.; Du, R.; Yan, X. S.; Zhou, Y. L. Fe7S8 nanoparticles attached carbon networks as anode materials for both lithium and sodium ion batteries. Chem. Phys. Lett. 2018, 706, 273-279.
[11]
Choi, M. J.; Kim, J.; Yoo, J. K.; Yim, S.; Jeon, J.; Jung, Y. S. Extremely small pyrrhotite Fe7S8 nanocrystals with simultaneous carbon-encapsulation for high-performance Na-ion batteries. Small 2018, 14, 1702816.
[12]
Chen, S. H.; Fan, L.; Xu, L. L.; Liu, Q.; Qin, Y.; Lu, B. G. 100 K cycles: Core-shell h-FeS@C based lithium-ion battery anode. Energy Storage Mater. 2017, 8, 20-27.
[13]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655-2694.
[14]
Fan, H. H.; Li, H. H.; Guo, J. Z.; Zheng, Y. P.; Huang, K. C.; Fan, C. Y.; Sun, H. Z.; Li, X. F.; Wu, X. L.; Zhang, J. P. Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties. J. Mater. Chem. A 2018, 6, 7997-8005.
[15]
Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. Q.; Wang, X. N.; Wu, W. N.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res. 2019, 12, 2250-2258.
[16]
Xu, Y. X.; Li, W. Y.; Zhang, F.; Zhang, X. L.; Zhang, W. J.; Lee, C. S.; Tang, Y. B. In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 3697-3703.
[17]
Liu, J.; Wen, Y.; R.; Wang, Y.; Van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025-6030.
[18]
Zhang, D.; Mai, Y. J.; Xiang, J. Y.; Xia, X. H.; Qiao, Y. Q.; Tu, J. P. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J. Power Sources 2012, 217, 229-235.
[19]
Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283-3291.
[20]
Xiao, S.; Liu, S. H.; Zhang, J. Q.; Wang, Y. Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium-sulfur batteries. J. Power Sources 2015, 293, 119-126.
[21]
Zhong, Y. T.; Li, B.; Li, S. M.; Xu, S. Y.; Pan, Z. H.; Huang, Q. M.; Xing, L. D.; Wang, C. S.; Li, W. S. Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 2018, 10, 56.
[22]
Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614-4626.
[23]
Jiang, F. Y.; Liu, Y. Z.; Wang, Q.; Zhou, Y. L. Hierarchical Fe3O4@NC composites: Ultra-long cycle life anode materials for lithium ion batteries. J. Mater. Sci. 2018, 53, 2127-2136.
[24]
Wei, X. J.; Tan, X.; Meng, J. S.; Wang, X. P.; Hu, P.; Yang, W.; Tan, S. S.; An, Q. Y.; Mai, L. Q. Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage. Nano Res. 2018, 11, 6206-6216.
[25]
Liu, Y. Z.; Zhong, W. T.; Yang, C. G.; Pan, Q. Z.; Li, Y. P.; Wang, G.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 24702-24708.
[26]
Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051-2058.
[27]
Veerasubramani, G. K.; Subramanian, Y.; Park, M. S.; Nagaraju, G.; Senthilkumar, B.; Lee, Y. S.; Kim, D. W. Enhanced storage ability by using a porous pyrrhotite@N-doped carbon yolk-shell structure as an advanced anode material for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 20056-20068.
[28]
Yuan, J.; Hu, X.; Chen, J. X.; Liu, Y. J.; Huang, T. Z; Wen, Z. H. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage. J. Mater. Chem. A 2019, 7, 9289-9296.
[29]
Zhou, Y. L.; Li, Y. Y.; Wang, Q. Q.; Du, R.; Zhang, M.; Sun, X. Q.; Zhang, X. Y.; Kang, L. T; Jiang, F. Y. Ultrasmall MoS3 loaded GO nanocomposites as high-rate and long-cycle-life Anode Materials for lithium- and sodium-ion batteries. ChemElectroChem 2019, 6, 3113-3119.
[30]
Long, B.; Zhang, J. N.; Luo, L.; Ouyang, G. F.; Balogun, M. S.; Song, S. Q; Tong, Y. X. High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2 nanodots as an anode of an all-flexible sodium-ion battery. J. Mater. Chem. A 2019, 7, 2626-2635.
[31]
Hansson, E. B.; Odziemkowski, M. S.; Gillham, R. W. Formation of poorly crystalline iron monosulfides: Surface redox reactions on high purity iron, spectroelectrochemical studies. Corr. Sci. 2006, 48, 3767-3783.
[32]
Bulusheva, L. G.; Okotrub, A. V.; Fedoseeva, Y. V.; Kurenya, A. G.; Asanov, I. P.; Vilkov, O. Y.; Koós, A. A.; Grobert, N. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys. Chem. Chem. Phys. 2015, 17, 23741-23747.
[33]
Zhang, K. L.; Zhang, T. W.; Liang, J. W.; Zhu, Y. C.; Lin, N.; Qian, Y. T. A potential pyrrhotite (Fe7S8) anode material for lithium storage. RSC Adv. 2015, 5, 14828-14831.
[34]
Guo, Y. M.; Zhang, L. J.; Wang, J. T.; Liang, J. M.; Xi, L. D. G. Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim. Acta 2019, 322, 134763.
[35]
Liu, M. T.; Deng, X.; Ma, Y. D.; Xie, W. H.; Hou, X. Y.; Fu, Y. J.; He, D. Y. Well-designed hierarchical Co3O4 architecture as a long-life and ultrahigh rate capacity anode for advanced lithium-ion batteries. Adv. Mater. Interfaces 2017, 4, 1700553.
[36]
Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528-537.
[37]
Li, L. S.; Cabán-Acevedo, M.; Girard, S. N.; Jin, S. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 2014, 6, 2112-2118.
[38]
Reddy, M.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792-2799.
[39]
Zhang, D. W.; Chen, C. H.; Zhang, J.; Ren, F. Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers. Chem. Mater. 2005, 17, 5242-5245.
[40]
Wang, X. Y.; Hao, H.; Liu, J. L.; Huang, T.; Yu, A. S. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 2011, 56, 4065-4069.
[41]
Hu, X.; Liu, Y. J.; Chen, J. X.; Jia, J. C.; Zhan, H. B.; Wen, Z. H. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 1138-1148.
[42]
Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717-7722.
[43]
Fang, G. Z.; Wu, Z. X.; Zhou, J.; Zhu, C. Y.; Cao, X. X.; Lin, T. Q.; Chen, Y. M.; Wang, C.; Pan, A. Q.; Liang, S. Q. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 2018, 8, 1703155.
[44]
Hong, Z. S.; Zhen, Y. C.; Ruan, Y. R.; Kang, M. L.; Zhou, K. Q.; Zhang, J. M.; Huang, Z. G.; Wei, M. D. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 2018, 30, 1802035.
[45]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[46]
Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281-289.
[47]
Hou, B. H.; Wang, Y. Y.; Guo, J. Z.; Ning, Q. L.; Xi, X, T.; Pang, W. L.; Cao, A. M.; Wang, X. L.; Zhang, J. P.; Wu, X. L. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 2018, 10, 9218-9225.
[48]
Jin, A. H.; Kim, M. J.; Lee, K. S.; Yu, S. H.; Sung, Y. E. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 2019, 12, 695-700.
[49]
Huang, W.; Sun, H. Y.; Shangguan, H. H.; Cao, X. Y.; Xiao, X. Y.; Shen, F.; Mølhave, K.; Ci, L. J.; Si, P. C.; Zhang, J. D. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 2018, 10, 7851-7859.
[50]
Zhang, C. Z.; Han, F.; Ma, J. M.; Li, Z.; Zhang, F. Q.; Xu, S. H.; Liu, H. B.; Li, X. K.; Liu, J. S.; Lu, A. H. Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage. J. Mater. Chem. A 2019, 7, 11771-1178.
[51]
Chen, W. H.; Zhang, X. X.; Mi, L. W.; Liu, C. T.; Zhang, J. M.; Cui, S. Z.; Feng, X. M.; Cao, Y. L.; Shen, C. Y. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/ Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 2019, 30, 1806664.
File
12274_2020_2677_MOESM1_ESM.pdf (8.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2019
Revised: 14 January 2020
Accepted: 19 January 2020
Published: 26 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51772257), the Major Basic Research Project of Shandong Natural Science Foundation (No. ZR2018ZC1459), and Doctor Foundation of Shandong Province (No. ZR2017BB081) for financial support.

Return