AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2

Shaolong Jiang1,§( )Jin Yang2,3,§Yuping Shi1Jing Zhao2,3Chunyu Xie1Liyun Zhao1Jiatian Fu1Pengfei Yang1Yahuan Huan1Qin Xie4Huachao Jiang2Qing Zhang1Xianlong Wang2Fuhai Su2( )Yanfeng Zhang1
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§ Shaolong Jiang and Jin Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Owing to its anisotropic optical and electrical properties, rhenium diselenide (ReSe2) has garnered considerable attention recently as a candidate material for polarization-sensitive photodetectors. However, the direct and controllable synthesis of large-sized ReSe2 with a uniform thickness is still a great challenge. Herein, we have refined the synthesis method to obtain uniform monolayer ReSe2 flakes with a size of up to ~ 106 μm on sapphire via an ambient-pressure chemical vapor deposition technique using Na promoter from sodium chloride. Interestingly, optical pump-probe spectroscopy revealed a fast switching from saturable absorption (SA) to absorption enhancement (AE) in subpicosecond time scale, followed by a slower decay induced by exciton recombination. Furthermore, both AE and SA signals exhibited clear angular dependence with a periodicity of 180°, which reflected the dichroism in nonlinear absorption dynamics. In addition, the photocarrier dynamics including free-carrier transport and subpicosecond relaxation due to exciton formation or surface trapping was probed using time resolved terahertz spectroscopy. We believe that our study serves as a reference for atomically controlled synthesis of large-sized ReSe2 and provides useful insights on its optoelectronic properties for novel device applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2673_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[2]
Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[3]
Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[4]
Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.
[5]
Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296-6341.
[6]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[7]
Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154-11164.
[8]
Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660-1666.
[9]
Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752-2760.
[10]
Hong, M.; Zhou, X. B.; Gao, N.; Jiang, S. L.; Xie, C. Y.; Zhao, L. Y.; Gao, Y.; Zhang, Z. P.; Yang, P. F.; Shi, Y. P. et al. Identifying the non-identical outermost selenium atoms and invariable band gaps across the grain boundary of anisotropic rhenium diselenide. ACS Nano 2018, 12, 10095-10103.
[11]
Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.
[12]
Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2. Nano Lett. 2017, 17, 3202-3207.
[13]
Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296-8301.
[14]
Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732-2742.
[15]
Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. Y.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018, 11, 1787-1797.
[16]
Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.
[17]
Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149-157.
[18]
Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 2015, 15, 198-205.
[19]
Shi, Y. P.; Yang, P. F.; Jiang, S. L.; Zhang, Z. P.; Huan, Y. H.; Xie, C. Y.; Hong, M.; Shi, J. P.; Zhang, Y. F. Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology 2019, 30, 034002.
[20]
Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.
[21]
Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017, 17, 5056-5063.
[22]
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[23]
He, J. Q.; Zhang, L.; He, D. W.; Wang, Y. S.; He, Z. Y.; Zhao, H. Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2. Opt. Express 2018, 26, 21501-21509.
[24]
Liu, F.; Zhao, X.; Yan, X. Q.; Xie, J. F.; Hui, W. W.; Xin, X. F.; Liu, Z. B.; Tian, J. G. Ultrafast nonlinear absorption and carrier relaxation in ReS2 and ReSe2 films. J. Appl. Phys. 2019, 125, 173105.
[25]
Cui, Q. N.; He, J. Q.; Bellus, M. Z.; Mirzokarimov, M.; Hofmann, T.; Chiu, H. Y.; Antonik, M.; He, D. W.; Wang, Y. S.; Zhao, H. Transient absorption measurements on anisotropic monolayer ReS2. Small 2015, 11, 5565-5571.
[26]
Wang, X. F.; Shinokita, K.; Lim, H. E.; Mohamed, N. B.; Miyauchi, Y.; Cuong, N. T.; Okada, S.; Matsuda, K. Direct and indirect exciton dynamics in few-layered ReS2 revealed by photoluminescence and pump-probe spectroscopy. Adv. Funct. Mater. 2019, 29, 1806169.
[27]
Wen, W.; Zhu, Y. M.; Liu, X. L.; Hsu, H. P.; Fei, Z.; Chen, Y. F.; Wang, X. S.; Zhang, M.; Lin, K. H.; Huang, F. S. et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure. Small 2017, 13, 1603788.
[28]
Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681-11688.
[29]
Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455-1460.
[30]
Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett. 2016, 16, 5888-5894.
[31]
Jiang, S. L.; Zhao, L. Y.; Shi, Y. P.; Xie, C. Y.; Zhang, N.; Zhang, Z. P.; Huan, Y. H.; Yang, P. F.; Hong, M.; Zhou, X. B. et al. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils. Nanotechnology 2018, 29, 204003.
[32]
Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[33]
Suess, R. J.; Jadidi, M. M.; Murphy, T. E.; Mittendorff, M. Carrier dynamics and transient photobleaching in thin layers of black phosphorus. Appl. Phys. Lett. 2015, 107, 081103.
[34]
Meng, X. H.; Zhou, Y. J.; Chen, K.; Roberts, R. H.; Wu, W. Z.; Lin, J. F.; Chen, R. T.; Xu, X. C.; Wang, Y. G. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater. 2018, 6, 1800137.
[35]
Ceballos, F.; Zhao, H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1604509.
[36]
Ge, S. F.; Li, C. K.; Zhang, Z. M.; Zhang, C. L.; Zhang, Y. D.; Qiu, J.; Wang, Q. S.; Liu, J. K.; Jia, S.; Feng, J. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett. 2015, 15, 4650-4656.
[37]
Malic, E.; Winzer, T.; Knorr, A. Efficient orientational carrier relaxation in optically excited graphene. Appl. Phys. Lett. 2012, 101, 213110.
[38]
Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.
[39]
Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.
[40]
Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Elorza, A. Z.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248-252.
[41]
Nuss, M. C.; Auston, D. H.; Capasso, F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Phys. Rev. Lett. 1987, 58, 2355-2358.
[42]
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
[43]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[44]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[45]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[46]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Nano Research
Pages 667-675
Cite this article:
Jiang S, Yang J, Shi Y, et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Research, 2020, 13(3): 667-675. https://doi.org/10.1007/s12274-020-2673-4
Topics:

955

Views

26

Crossref

N/A

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 05 November 2019
Revised: 14 January 2020
Accepted: 23 January 2020
Published: 12 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return