Journal Home > Volume 13 , Issue 3

Chemical vapor deposition (CVD) is among the most utilized techniques to fabricate single-layer graphene on a large substrate. However, the substrate is limited to very few transition metals like copper. On the other hand, many applications involving graphene require technologically relevant substrates like semiconductors and metal oxide, and therefore, a subsequent process is often needed to transfer CVD to the new substrate. As graphene is fragile, a supporting material such as a polymer film, is introduced during the transfer process. This brings unexpected challenges, the biggest of which is the complete removal of this support material without contaminating graphene. Numerous methods have been developed, each having advantages and drawbacks. This review will first introduce the classic transfer method using poly(methyl methacrylate) (PMMA) as the support material. The operating procedure and issues of PMMA residuals will be discussed. Methods to minimize/eliminate contamination will be presented, together with alternative approaches that do not require the use of PMMA.


menu
Abstract
Full text
Outline
About this article

Removing contaminants from transferred CVD graphene

Show Author's information Xiaojian YangMingdi Yan( )
Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA

Abstract

Chemical vapor deposition (CVD) is among the most utilized techniques to fabricate single-layer graphene on a large substrate. However, the substrate is limited to very few transition metals like copper. On the other hand, many applications involving graphene require technologically relevant substrates like semiconductors and metal oxide, and therefore, a subsequent process is often needed to transfer CVD to the new substrate. As graphene is fragile, a supporting material such as a polymer film, is introduced during the transfer process. This brings unexpected challenges, the biggest of which is the complete removal of this support material without contaminating graphene. Numerous methods have been developed, each having advantages and drawbacks. This review will first introduce the classic transfer method using poly(methyl methacrylate) (PMMA) as the support material. The operating procedure and issues of PMMA residuals will be discussed. Methods to minimize/eliminate contamination will be presented, together with alternative approaches that do not require the use of PMMA.

Keywords: graphene, chemical vapor deposition (CVD), transfer, poly(methyl methacrylate) (PMMA)

References(91)

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Park, J.; Yan, M. D. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2013, 46, 181-189.
[3]
Bøeggild, P. The war on fake graphene. Nature 2018, 562, 502-503.
[4]
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
[5]
Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704-1708.
[6]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.
[7]
Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392-2415.
[8]
Compton, O. C.; Nguyen, S. B. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711-723.
[9]
Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499-3503.
[10]
Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F.; Dong, S. J. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem.—Eur. J. 2009, 15, 6116-6120.
[11]
Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
[12]
Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.
[13]
Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.
[14]
Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612-12613.
[15]
Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916-6924.
[16]
Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Räder, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216-4217.
[17]
Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802-1808.
[18]
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.
[19]
Narita, A.; Feng, X. L.; Müllen, K. Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 2015, 15, 295-309.
[20]
Zhou, L.; Liao, L.; Wang, J. Y.; Yu, J. W.; Li, D. H.; Xie, Q.; Liu, Z. R.; Yang, Y. L.; Guo, X. F.; Liu, Z. F. Substrate-induced graphene chemistry for 2D superlattices with tunable periodicities. Adv. Mater. 2016, 28, 2148-2154.
[21]
Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741-17744.
[22]
Ali, U.; Karim, K. J. B. A.; Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678-705.
[23]
Wang, Z. W.; Xue, Z. Y.; Zhang, M.; Wang, Y. Q.; Xie, X. M.; Chu, P. K.; Zhou, P.; Di, Z. F.; Wang, X. Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 2017, 13, 1700929.
[24]
Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C. et al. Clean-lifting transfer of large-area residual-free graphene films. Adv. Mater. 2013, 25, 4521-4526.
[25]
Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414-419.
[26]
Her, M.; Beams, R.; Novotny, L. Graphene transfer with reduced residue. Phys. Lett. A 2013, 377, 1455-1458.
[27]
Borin Barin, G.; Song, Y.; de Fátima Gimenez, I.; Souza Filho, A. G.; Barreto, L. S.; Kong, J. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 2015, 84, 82-90.
[28]
Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153.
[29]
Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82-92.
[30]
Liu, L. H.; Shang, W. J.; Han, C.; Zhang, Q.; Yao, Y.; Ma, X. Q.; Wang, M. H.; Yu, H. T.; Duan, Y.; Sun, J. et al. Two-in-one method for graphene transfer: Simplified fabrication process for organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 7289-7295.
[31]
Sun, J. B.; Finklea, H. O.; Liu, Y. X. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology 2017, 28, 125703.
[32]
Xie, W. J.; Weng, L. T.; Ng, K. M.; Chan, C. K.; Chan, C. M. Clean graphene surface through high temperature annealing. Carbon 2015, 94, 740-748.
[33]
Chen, X. D.; Liu, Z. B.; Zheng, C. Y.; Xing, F.; Yan, X. Q.; Chen, Y. S.; Tian, J. G. High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon 2013, 56, 271-278.
[34]
Liu, B.; Chiu, I. S.; Lai, C. S. Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing. Vacuum 2017, 137, 8-13.
[35]
Gong, C.; Floresca, H. C.; Hinojos, D.; McDonnell, S.; Qin, X. Y.; Hao, Y. F.; Jandhyala, S.; Mordi, G.; Kim, J.; Colombo, L. et al. Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide. J. Phys. Chem. C 2013, 117, 23000-23008.
[36]
Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.
[37]
Tyler, B. J.; Brennan, B.; Stec, H.; Patel, T.; Hao, L.; Gilmore, I. S.; Pollard, A. J. Removal of organic contamination from graphene with a controllable mass-selected argon gas cluster ion beam. J. Phys. Chem. C 2015, 119, 17836-17841.
[38]
Deng, C. X.; Lin, W. W.; Agnus, G.; Dragoe, D.; Pierucci, D.; Ouerghi, A.; Eimer, S.; Barisic, I.; Ravelosona, D.; Chappert, C. et al. Reversible charge-transfer doping in graphene due to reaction with polymer residues. J. Phys. Chem. C 2014, 118, 13890-13897.
[39]
Kim, S.; Shin, S.; Kim, T.; Du, H.; Song, M.; Lee, C. W.; Kim, K.; Cho, S.; Seo, D. H.; Seo, S. Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 2016, 98, 352-357.
[40]
Choi, W. J.; Chung, Y. J.; Park, S.; Yang, C. S.; Lee, Y. K.; An, K. S.; Lee, Y. S.; Lee, J. O. A simple method for cleaning graphene surfaces with an electrostatic force. Adv. Mater. 2014, 26, 637-644.
[41]
Ahn, Y.; Kim, J.; Ganorkar, S.; Kim, Y. H.; Kim, S. I. Thermal annealing of graphene to remove polymer residues. Mater. Express 2016, 6, 69-76.
[42]
Zhang, C. T. F.; Huang, J.; Tu, R.; Zhang, S.; Yang, M. J.; Li, Q. Z.; Shi, J.; Li, H. W.; Zhang, L. M.; Goto, T. et al. Transfer-free growth of graphene on Al2O3 (0001) using a three-step method. Carbon 2018, 131, 10-17.
[43]
Song, I.; Park, Y.; Cho, H.; Choi, H. C. Transfer-free, large-scale growth of high-quality graphene on insulating substrate by physical contact of copper foil. Angew. Chem., Int. Ed. 2018, 57, 15374-15378.
[44]
Zhang, Q.; Chen, S. F.; Zhang, S.; Shang, W. J.; Liu, L. H.; Wang, M. H.; Yu, H. T.; Deng, L. L.; Qi G. Q.; Huang, W. et al. Negative differential resistance and hysteresis in graphene-based organic light-emitting devices. J. Mater. Chem. C 2018, 6, 1926-1932.
[45]
Lin, Y. C.; Jin, C. H.; Lee, J. C.; Jen, S. F.; Suenaga, K.; Chiu, P. W. Clean transfer of graphene for isolation and suspension. ACS Nano 2011, 5, 2362-2368.
[46]
Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 2007, 104, 18392-18397.
[47]
Zhang, Y. B.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 2009, 5, 722-726.
[48]
Pettes, M. T.; Jo, I.; Yao, Z.; Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 2011, 11, 1195-1200.
[49]
Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.
[50]
Hess, L. H.; Jansen, M.; Maybeck, V.; Hauf, M. V.; Seifert, M.; Stutzmann, M.; Sharp, I. D.; Offenhäusser, A.; Garrido, J. A. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 2011, 23, 5045-5049.
[51]
Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
[52]
Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Molecular doping of graphene. Nano Lett. 2008, 8, 173-177.
[53]
Avsar, A.; Yang, T. Y.; Bae, S.; Balakrishnan, J.; Volmer, F.; Jaiswal, M.; Yi, Z.; Ali, S. R.; Guntherodt, G.; Hong, B. H. et al. Toward wafer scale fabrication of graphene based spin valve devices. Nano Lett. 2011, 11, 2363-2368.
[54]
Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.
[55]
Nasir, T.; Kim, B. J.; Kim, K. W.; Lee, S. H.; Lim, H. K.; Lee, D. K.; Jeong, B. J.; Kim, H. C.; Yu, H. K.; Choi, J. Y. Design of softened polystyrene for crack- and contamination-free large-area graphene transfer. Nanoscale 2018, 10, 21865-21870.
[56]
Song, J.; Kam, F. Y.; Png, R. Q.; Seah, W. L.; Zhuo, J. M.; Lim, G. K.; Ho, P. K. H.; Chua, L. L. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 2013, 8, 356-362.
[57]
Kang, J.; Shin, D.; Bae, S.; Hong, B. H. Graphene transfer: Key for applications. Nanoscale 2012, 4, 5527-5537.
[58]
Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.
[59]
Chen, M. G.; Haddon, R. C.; Yan, R. X.; Bekyarova, E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017, 4, 1054-1063.
[60]
Vandenburg, H. J.; Clifford, A. A.; Bartle, K. D.; Carlson, R. E.; Carroll, J.; Newton, I. D. A simple solvent selection method for accelerated solvent extraction of additives from polymers. Analyst 1999, 124, 1707-1710.
[61]
Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832-3839.
[62]
Yan, W.; He, W. Y.; Chu, Z. D.; Liu, M. X.; Meng, L.; Dou, R. F.; Zhang, Y. F.; Liu, Z. F.; Nie, J. C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159.
[63]
Qi, Y.; Meng, C. X.; Xu, X. Z.; Deng, B.; Han, N. N.; Liu, M. X.; Hong, M.; Ning, Y. X.; Liu, K. H.; Zhao, J. J. et al. Unique transformation from graphene to carbide on Re(0001) induced by strong carbon-metal interaction. J. Am. Chem. Soc. 2017, 139, 17574-17581.
[64]
Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649-1653.
[65]
Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650.
[66]
Yoon, H. J.; Jun, D. H.; Yang, J. H.; Zhou, Z. X.; Yang, S. S.; Cheng, M. M. C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuat. B-Chem. 2011, 157, 310-313.
[67]
Suhail, A.; Islam, K.; Li, B.; Jenkins, D.; Pan, G. Reduction of polymer residue on wet-transferred CVD graphene surface by deep UV exposure. Appl. Phys. Lett. 2017, 110, 183103.
[68]
Cheng, Z. G.; Zhou, Q. Y.; Wang, C. X.; Li, Q.; Wang, C.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767-771.
[69]
Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363.
[70]
Tinone, M. C. K.; Tanaka, K.; Ueno, N. Photodecomposition of poly(methylmethacrylate) thin films by monochromatic soft X-ray radiation. J. Vac. Sci. Technol. A 1995, 13, 1885-1892.
[71]
Lehockey, E. M.; Reid, I.; Hill, I. The radiation chemistry of poly(methyl methacrylate) polymer resists. J. Vac. Sci. Technol. A 1988, 6, 2221-2225.
[72]
Fragalà, M. E.; Compagnini, G.; Torrisi, L.; Puglisi, O. Ion beam assisted unzipping of PMMA. Nucl. Instrum. Meth. Phys. Rec. Struct. B 1998, 141, 169-173.
[73]
Sun, H. Y.; Chen, D.; Wu, Y. M.; Yuan, Q. L.; Guo, L. C.; Dai, D.; Xu, Y.; Zhao, P.; Jiang, N.; Lin, C. T. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. J. Mater. Chem. C 2017, 5, 1880-1884.
[74]
Li, Z. T.; Wang, Y. J.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P. et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 2013, 12, 925-931.
[75]
Zhao, S. C.; Surwade, S. P.; Li, Z. T.; Liu, H. T. Photochemical oxidation of CVD-grown single layer graphene. Nanotechnology 2012, 23, 355703.
[76]
Shenoy, G. J.; Parobek, D.; Salim, M.; Li, Z. T.; Tian, C.; Liu, H. T. Substrate dependent photochemical oxidation of monolayer graphene. RSC Adv. 2016, 6, 8489-8494.
[77]
Ryu, G. H.; Lee, J.; Kang, D.; Jo, H. J.; Shin, H. S.; Lee, Z. Effects of dry oxidation treatments on monolayer graphene. 2D Mater. 2017, 4, 024011.
[78]
Peterson, J. D.; Vyazovkin, S.; Wight, C. A. Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromol. Rapid Comm. 1999, 20, 480-483.
[79]
Cao, C. L.; Liu, J.; Ma, J. Y.; Tan, Z. Y.; Zhang, H. X. Stabilizing effect of oxygen on the initial stages of poly(methyl methacrylate) degradation. J. Therm. Anal. Calorim. 2016, 123, 1459-1467.
[80]
Kang, J. M.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J. B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 2012, 6, 5360-5365.
[81]
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
[82]
Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.
[83]
Zhang, D. D.; Du, J. H.; Hong, Y. L.; Zhang, W. M.; Wang, X.; Jin, H.; Burn, P. L.; Yu, J. S.; Chen, M. L.; Sun, D. M. et al. A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices. ACS Nano 2019, 13, 5513-5522.
[84]
Belyaeva, L. A.; Fu, W. Y.; Arjmandi-Tash, H.; Schneider, G. F. Molecular caging of graphene with cyclohexane: Transfer and electrical transport. ACS Cent. Sci. 2016, 2, 904-909.
[85]
Chandrashekar, B. N.; Cai, N. D.; Liu, L. W. Y.; Smitha, A. S.; Wu, Z. F.; Chen, P. C.; Shi, R.; Wang, W. J.; Wang, J. W.; Tang, C. M. et al. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. J. Colloid Interface Sci. 2019, 546, 11-19.
[86]
Leong, W. S.; Wang, H. Z.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.
[87]
Qu, J. Y.; Li, B. W.; Shen, Y. T.; Huo, S. C.; Xu, Y.; Liu, S. Y.; Song, B. K.; Wang, H.; Hu, C. G.; Feng, W. Evaporable glass-state molecule-assisted transfer of clean and intact graphene onto arbitrary substrates. ACS Appl. Mater. Interfaces 2019, 11, 16272-16279.
[88]
Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784-1791.
[89]
Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.
[90]
Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 14446-14451.
[91]
Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670-7674.
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 October 2019
Revised: 19 December 2019
Accepted: 19 January 2020
Published: 14 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors are grateful for the financial support from the National Science Foundation (No. CHE-1112436).

Return