References(32)
[1]
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.
[2]
Shen, Z. Y.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W. P.; Zhou, Z. J.; Shi, C. R.; Ke, C. M.; Bregadze, V. I. et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 2018, 12, 11355-11365.
[3]
Li, M. L.; Xia, J.; Tian, R. S.; Wang, J. Y.; Fan, J. L.; Du, J. J.; Long, S. R.; Song, X. Z.; Foley, J. W.; Peng, X. J. Near-infrared light-initiated molecular superoxide radical generator: Rejuvenating photodynamic therapy against hypoxic tumors. J. Am. Chem. Soc. 2018, 140, 14851-14859.
[4]
Yu, Z. Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 2018, 9, 5044.
[5]
Song, X. J.; Feng, L. Z.; Liang, C.; Gao, M.; Song, G. S.; Liu, Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017, 10, 1200-1212.
[6]
Sun, B. M.; Wu, J. R.; Cui, S. B.; Zhu, H. H.; An, W.; Fu, Q. G.; Shao, C. W.; Yao, A. H.; Chen, B. D.; Shi, D. L. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Res. 2017, 10, 37-48.
[7]
Zhao, P. R.; Tang, Z. M.; Chen, X. Y.; He, Z. Y.; He, X. H.; Zhang, M.; Liu, Y. Y.; Ren, D. D.; Zhao, K. L.; Bu, W. B. Ferrous-cysteine- phosphotungstate nanoagent with neutral pH fenton reaction activity for enhanced cancer chemodynamic therapy. Mater. Horiz. 2019, 6, 369-374.
[8]
Blanco, E.; Bey, E. A.; Khemtong, C.; Yang, S. G.; Setti-Guthi, J.; Chen, H. B.; Kessinger, C. W.; Carnevale, K. A.; Bornmann, W. G.; Boothman, D. A. et al. β-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 2010, 70, 3896-3904.
[9]
Chen, Q.; Espey, M. G.; Sun, A. Y.; Pooput, C.; Kirk, K. L.; Krishna, M. C.; Khosh, D. B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105-11109.
[10]
Chew, E. H.; Nagle, A. A.; Zhang, Y. C.; Scarmagnani, S.; Palaniappan, P.; Bradshaw, T. D.; Holmgren, A.; Westwell, A. D. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: Potential candidates for cancer therapy and chemoprevention. Free Radic. Biol. Med. 2010, 48, 98-111.
[11]
Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000-11012.
[12]
Li, S. Y.; Cheng, H.; Xie, B. R.; Qiu, W. X.; Zeng, J. Y.; Li, C. X.; Wan, S. S.; Zhang, L.; Liu, W. L.; Zhang, X. Z. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 2017, 11, 7006-7018.
[13]
Zhang, R.; Feng, L. Z.; Dong, Z. L.; Wang, L.; Liang, C.; Chen, J. W.; Ma, Q. X.; Zhang, R.; Chen, Q.; Wang, Y. C. et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 2018, 162, 123-131.
[14]
Qian, X. Q.; Gu, Z.; Chen, Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017, 4, 800-816.
[15]
Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. T. et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. 2011, 50, 11994-11998.
[16]
Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224-9237.
[17]
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506-1520.
[18]
Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q., Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911-4916.
[19]
Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267-3278.
[20]
Gao, L. Z.; Fan, K. L.; Yan, X. Y. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207-3227.
[21]
Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302-11307.
[22]
Peng, Y. H.; Wang, Z. Y.; Liu, W. S.; Zhang, H. L.; Zuo, W.; Tang, H.; Chen, F. J.; Wang, B. D. Size- and shape-dependent peroxidase-like catalytic activity of MnFe2O4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Trans. 2015, 44, 12871-12877.
[23]
Singh, N.; Savanur, M. A.; Srivastava, S.; D'Silva, P.; Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem., Int. Ed. 2017, 56, 14267-14271.
[24]
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
[25]
Hizir, M. S.; Top, M.; Balcioglu, M.; Rana, M.; Robertson, N. M.; Shen, F. S.; Sheng, J.; Yigit, M. V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016, 88, 600-605.
[26]
Hu, L. Z.; Liao, H.; Feng, L. Y.; Wang, M.; Fu, W. S. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 2018, 90, 6247-6252.
[27]
Maji, S. K.; Mandal, A. K.; Nguyen, K. T.; Borah, P.; Zhao, Y. L. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces 2015, 7, 9807-9816.
[28]
Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.
[29]
Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451-7458.
[30]
Zhang, Y.; Sun, P. P.; Zhang, L.; Wang, Z. Z.; Wang, F. M.; Dong, K.; Liu, Z.; Ren, J. S.; Qu, X. G. Silver-infused porphyrinic metal-organic framework: Surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv. Funct. Mater. 2019, 29, 1808594.
[31]
Liu, Z. W.; Wang, F. M.; Ren, J. S.; Qu, X. G. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21-31.
[32]
Ranji-Burachaloo, H.; Karimi, F.; Xie, K.; Fu, Q.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Interfaces 2017, 9, 33599-33608.