Journal Home > Volume 13 , issue 3

We report gold nanoparticles (AuNPs) doped iron-based metal-organic frameworks (GIM) which displays near-infrared light (NIR)-enhanced cascade nanozyme against hypoxic tumors. Due to the strong protein adsorption-induced surface passivation, AuNPs suffer from the loss of glucose oxidase (GOx) activity. However, GIM could protect the GOx-like activity of AuNPs with the satisfactory shield capability. In addition, GIM exhibited excellent photothermal conversion ability and unique NIR light-enhanced GOx-like activity, which could efficiently increase the endogenous H2O2 production. Meanwhile, as the produced H2O2 is converted by GIM into O2 and highly toxic ⋅OH. Thus, GIM-catalyzed cascade reactions with NIR light irradiation not only offer the O2 but also promote the reactive oxygen species (ROS) generation at tumor sites. The produced O2 could be further applied to AuNPs catalytic oxidation of glucose and relieve hypoxic condition of tumor microenvironment (TME). As a proof-of-concept study, GIM demonstrates the admirable tumor ablation under NIR irradiation in vivo.


menu
Abstract
Full text
Outline
References
Electronic supplementary material
About this article
Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors
Show Author's information Xinli Liu1Yongchun Pan1Jingjing Yang1Yanfeng Gao1Ting Huang1Xiaowei Luan1Yuzhen Wang2( )Yujun Song1( )
Department of Biomedical Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
Abstract

We report gold nanoparticles (AuNPs) doped iron-based metal-organic frameworks (GIM) which displays near-infrared light (NIR)-enhanced cascade nanozyme against hypoxic tumors. Due to the strong protein adsorption-induced surface passivation, AuNPs suffer from the loss of glucose oxidase (GOx) activity. However, GIM could protect the GOx-like activity of AuNPs with the satisfactory shield capability. In addition, GIM exhibited excellent photothermal conversion ability and unique NIR light-enhanced GOx-like activity, which could efficiently increase the endogenous H2O2 production. Meanwhile, as the produced H2O2 is converted by GIM into O2 and highly toxic ⋅OH. Thus, GIM-catalyzed cascade reactions with NIR light irradiation not only offer the O2 but also promote the reactive oxygen species (ROS) generation at tumor sites. The produced O2 could be further applied to AuNPs catalytic oxidation of glucose and relieve hypoxic condition of tumor microenvironment (TME). As a proof-of-concept study, GIM demonstrates the admirable tumor ablation under NIR irradiation in vivo.

Keywords: nanozyme, metal-organic frameworks, gold nanoparticles, near-infrared light, reactive oxygen species
Received: 04 December 2019 Revised: 21 December 2019 Accepted: 19 January 2020 Published: 20 February 2020 Issue date: March 2020
References(32)
[1]
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.
[2]
Shen, Z. Y.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W. P.; Zhou, Z. J.; Shi, C. R.; Ke, C. M.; Bregadze, V. I. et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 2018, 12, 11355-11365.
[3]
Li, M. L.; Xia, J.; Tian, R. S.; Wang, J. Y.; Fan, J. L.; Du, J. J.; Long, S. R.; Song, X. Z.; Foley, J. W.; Peng, X. J. Near-infrared light-initiated molecular superoxide radical generator: Rejuvenating photodynamic therapy against hypoxic tumors. J. Am. Chem. Soc. 2018, 140, 14851-14859.
[4]
Yu, Z. Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 2018, 9, 5044.
[5]
Song, X. J.; Feng, L. Z.; Liang, C.; Gao, M.; Song, G. S.; Liu, Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017, 10, 1200-1212.
[6]
Sun, B. M.; Wu, J. R.; Cui, S. B.; Zhu, H. H.; An, W.; Fu, Q. G.; Shao, C. W.; Yao, A. H.; Chen, B. D.; Shi, D. L. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Res. 2017, 10, 37-48.
[7]
Zhao, P. R.; Tang, Z. M.; Chen, X. Y.; He, Z. Y.; He, X. H.; Zhang, M.; Liu, Y. Y.; Ren, D. D.; Zhao, K. L.; Bu, W. B. Ferrous-cysteine- phosphotungstate nanoagent with neutral pH fenton reaction activity for enhanced cancer chemodynamic therapy. Mater. Horiz. 2019, 6, 369-374.
[8]
Blanco, E.; Bey, E. A.; Khemtong, C.; Yang, S. G.; Setti-Guthi, J.; Chen, H. B.; Kessinger, C. W.; Carnevale, K. A.; Bornmann, W. G.; Boothman, D. A. et al. β-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 2010, 70, 3896-3904.
[9]
Chen, Q.; Espey, M. G.; Sun, A. Y.; Pooput, C.; Kirk, K. L.; Krishna, M. C.; Khosh, D. B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105-11109.
[10]
Chew, E. H.; Nagle, A. A.; Zhang, Y. C.; Scarmagnani, S.; Palaniappan, P.; Bradshaw, T. D.; Holmgren, A.; Westwell, A. D. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: Potential candidates for cancer therapy and chemoprevention. Free Radic. Biol. Med. 2010, 48, 98-111.
[11]
Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000-11012.
[12]
Li, S. Y.; Cheng, H.; Xie, B. R.; Qiu, W. X.; Zeng, J. Y.; Li, C. X.; Wan, S. S.; Zhang, L.; Liu, W. L.; Zhang, X. Z. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 2017, 11, 7006-7018.
[13]
Zhang, R.; Feng, L. Z.; Dong, Z. L.; Wang, L.; Liang, C.; Chen, J. W.; Ma, Q. X.; Zhang, R.; Chen, Q.; Wang, Y. C. et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 2018, 162, 123-131.
[14]
Qian, X. Q.; Gu, Z.; Chen, Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017, 4, 800-816.
[15]
Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. T. et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. 2011, 50, 11994-11998.
[16]
Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224-9237.
[17]
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506-1520.
[18]
Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q., Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911-4916.
[19]
Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267-3278.
[20]
Gao, L. Z.; Fan, K. L.; Yan, X. Y. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207-3227.
[21]
Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302-11307.
[22]
Peng, Y. H.; Wang, Z. Y.; Liu, W. S.; Zhang, H. L.; Zuo, W.; Tang, H.; Chen, F. J.; Wang, B. D. Size- and shape-dependent peroxidase-like catalytic activity of MnFe2O4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Trans. 2015, 44, 12871-12877.
[23]
Singh, N.; Savanur, M. A.; Srivastava, S.; D'Silva, P.; Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem., Int. Ed. 2017, 56, 14267-14271.
[24]
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
[25]
Hizir, M. S.; Top, M.; Balcioglu, M.; Rana, M.; Robertson, N. M.; Shen, F. S.; Sheng, J.; Yigit, M. V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016, 88, 600-605.
[26]
Hu, L. Z.; Liao, H.; Feng, L. Y.; Wang, M.; Fu, W. S. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 2018, 90, 6247-6252.
[27]
Maji, S. K.; Mandal, A. K.; Nguyen, K. T.; Borah, P.; Zhao, Y. L. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces 2015, 7, 9807-9816.
[28]
Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.
[29]
Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451-7458.
[30]
Zhang, Y.; Sun, P. P.; Zhang, L.; Wang, Z. Z.; Wang, F. M.; Dong, K.; Liu, Z.; Ren, J. S.; Qu, X. G. Silver-infused porphyrinic metal-organic framework: Surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv. Funct. Mater. 2019, 29, 1808594.
[31]
Liu, Z. W.; Wang, F. M.; Ren, J. S.; Qu, X. G. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21-31.
[32]
Ranji-Burachaloo, H.; Karimi, F.; Xie, K.; Fu, Q.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Interfaces 2017, 9, 33599-33608.
File
12274_2020_2668_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 December 2019
Revised: 21 December 2019
Accepted: 19 January 2020
Published: 20 February 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21874066, 81601632 and 61804076), the Natural Science Foundation of Jiangsu Province (Nos. BK20160616 and BK20180700), the Fundamental Research Funds for Central Universities, the Shuangchuang Program of Jiangsu Province, and the Thousand Talents Program for Young Researchers.

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return