AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance

He Li1Wenjiang Li1( )Wei Li1Minfang Chen1Rony Snyders2,3Carla Bittencourt2Zhihao Yuan1( )
Key Laboratory of Display Materials & Photoelectric Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Chimie des Interactions Plasma-Surface, University of Mons (UMONS), 20 Place du Parc, 7000 Mons, Belgium
Materia Nova Research Centre, 1 Avenue Nicolas Copernic, B 7000 Mons, Belgium
Show Author Information

Graphical Abstract

Abstract

Crystal phase engineering on CuInS2 (CIS) nanocrystals, especially polytypic structure, has become one of the research hotspots to design the advanced materials and devices for energy conversion and environment treatment. Here, the polytypic CIS nanosheets (NSs) including zincblende/wurtzite and chalcopyrite/wurtzite types were first time achieved in a hot-injection system using oleic acid and liquid paraffin as the reaction media. As-obtained polytypic CIS NSs exhibit significantly enhanced light-absorption ability and visible-light-driven photocatalytic performance originating from the rational hetero-crystalline interfaces and surface defect states, which efficiently inhibit the recombination of photo-generated carriers. Meanwhile, the polytypic CIS NSs were spin-coated onto the surface of fluorinated-tin oxide glass substrate and used as the photoelectrode, which shows an excellent photoelectrochemical (PEC) activity in aqueous solution. The present work not only provides a facile, rapid, low-cost, and environmental-friendly synthesis strategy to design the crystal phase and defect structure of ternary chalcogenides, but also demonstrates the relationships between the polytypic structure and photocatalytic/photoelectrochemical properties.

Electronic Supplementary Material

Download File(s)
12274_2020_2665_MOESM1_ESM.pdf (3.8 MB)

References

[1]
Bai, S.; Gao, C.; Low, J. X.; Xiong, Y. J. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031-2054.
[2]
Wu, L.; Chen, S. Y.; Fan, F. J.; Zhuang, T. T.; Dai, C. M.; Yu, S. H. Polytypic nanocrystals of Cu-based ternary chalcogenides: Colloidal synthesis and photoelectrochemical properties. J. Am. Chem. Soc. 2016, 138, 5576-5584.
[3]
Luo, Z.; Poyraz, A. S.; Kuo, C. H.; Miao, R.; Meng, Y. T.; Chen, S. Y.; Jiang, T.; Wenos, C.; Suib, S. L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2015, 27, 6-17.
[4]
Fang, Z. B.; Weng, S. X.; Ye, X. X.; Feng, W. H.; Zheng, Z. Y.; Lu, M. L.; Lin, S.; Fu, X. Z.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 13915-13924.
[5]
Chai, Y.; Lu, J. X.; Li, L.; Li, D. L.; Li, M.; Liang, J. TEOA-induced in situ formation of wurtzite and zinc-blende CdS heterostructures as a highly active and long-lasting photocatalyst for converting CO2 into solar fuel. Catal. Sci. Technol. 2018, 8, 2697-2706.
[6]
Vainorius, N.; Lehmann, S.; Jacobsson, D.; Samuelson, L.; Dick, K. A.; Pistol, M. E. Confinement in thickness-controlled GaAs polytype nanodots. Nano Lett. 2015, 15, 2652-2656.
[7]
Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2018, 230, 194-202.
[8]
Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. F.; Chen, X. Y. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 2019, 12, 1804-1809.
[9]
Xie, C. J.; Lu, X. Y.; Deng, F.; Luo, X. B.; Gao, J.; Dionysiou, D. D. Unique surface structure of nano-sized CuInS2 anchored on rGO thin film and its superior photocatalytic activity in real wastewater treatment. Chem. Eng. J. 2018, 338, 591-598.
[10]
Leach, A. D. P.; Mast, L. G.; Hernández-Pagán, E. A.; Macdonald, J. E. Phase dependent visible to near-infrared photoluminescence of CuInS2 nanocrystals. J. Mater. Chem. C 2015, 3, 3258-3265.
[11]
Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221-12237.
[12]
Lei, S. J.; Wang, C. Y.; Liu, L.; Guo, D. H.; Wang, C. N.; Tang, Q. L.; Cheng, B. C.; Xiao, Y. H.; Zhou, L. Spinel indium sulfide precursor for the phase-selective synthesis of Cu-In-S nanocrystals with zinc-blende, wurtzite, and spinel structures. Chem. Mater. 2013, 25, 2991-2997.
[13]
Gou, X. L.; Cheng, F. Y.; Shi, Y. H.; Zhang, L.; Peng, S. J.; Chen, J.; Chen, P. W. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc. 2006, 128, 7222-7229.
[14]
Liu, L. W.; Li, H.; Liu, Z. R.; Xie, Y. H. Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine. Mater. Des. 2018, 149, 145-152.
[15]
Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620-5621.
[16]
Koo, B.; Patel, R. N.; Korgel, B. A. Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem. Mater. 2009, 21, 1962-1966.
[17]
Huang, W. C.; Tseng, C. H.; Chang, S. H.; Tuan, H. Y.; Chiang, C. C.; Lyu, L. M.; Huang, M. H. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 2012, 28, 8496-8501.
[18]
Vahidshad, Y.; Tahir, M. N.; Mirkazemi, S. M.; Zad, A. I.; Ghasemzadeh, R.; Tremel, W. One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite-wurtzite polytypism structure. J. Mater. Sci: Mater. Electron. 2015, 26, 8960-8972.
[19]
Kruszynska, M.; Borchert, H.; Parisi, J.; Kolny-Olesiak, J. Synthesis and shape control of CuInS2 nanoparticles. J. Am. Chem. Soc. 2010, 132, 15976-15986.
[20]
Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 2018, 30, 1446-1461.
[21]
Park, J. C.; Nam, Y. S. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots. J. Colloid Interface Sci. 2015, 460, 173-180.
[22]
Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. J. Phys. Chem. B 2005, 109, 16671-16675.
[23]
Li, X. J.; Li, Y. N.; Xie, F.; Li, W.; Li, W. J.; Chen, M. F.; Zhao, Y. Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system. RSC Adv. 2015, 5, 84465-84470.
[24]
Li, H.; Yuan, Z. H.; Li, W.; Chen, M. F.; Snyders, R.; Li, W. J.; Bittencourt, C. Novel synthesis of porous β-In2S3 ultrathin nanosheets with large lateral size. Mater. Lett. 2019, 252, 15-18.
[25]
Wang, G. S.; Wei, H. Y.; Shi, J. J.; Xu, Y. Z.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 2017, 35, 17-25.
[26]
Tang, A. W.; Hu, Z. L.; Yin, Z.; Ye, H. H.; Yang, C. H.; Teng, F. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Trans. 2015, 44, 9251-9259.
[27]
Yu, C.; Zhang, L. L.; Tian, L.; Liu, D.; Chen, F. L.; Wang, C. Synthesis and formation mechanism of CuInS2 nanocrystals with a tunable phase. CrystEngComm 2014, 16, 9596-9602.
[28]
Zeng, T.; Ni, H. J.; Chen, Y. X.; Su, X. L.; Shi, W. Facile synthesis of CuInS2 nanocrystals “photovoltaic ink” via hot-injection strategy under ambient environment. Mater. Lett. 2016, 172, 94-97.
[29]
Yoshino, K.; Nomoto, K.; Kinoshita, A.; Ikari, T.; Akaki, Y.; Yoshitake, T. Dependence of Cu/In ratio of structural and electrical characterization of CuInS2 crystal. J. Mater. Sci: Mater. Electron. 2008, 19, 301-304.
[30]
Li, T. T.; Li, X. Y.; Zhao, Q. D.; Shi, Y.; Teng, W. Fabrication of n-type CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties. Appl. Catal. B: Environ. 2014, 156-157, 362-370.
[31]
Cai, W.; Xiang, W. D.; Wang, J. J.; Wang, X. M.; Zhong, J. S.; Liu, L. J. Biomolecule-assisted synthesis of copper indium sulfide microspheres with nanosheets. Mater. Lett. 2009, 63, 2495-2498.
[32]
Chen, J.; Liu, W. X.; Gao, W. W. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Appl. Surf. Sci. 2016, 368, 288-297.
[33]
Yuan, Y. J.; Chen, D. Q.; Huang, Y. W.; Yu, Z. T.; Zhong, J. S.; Chen, T. T.; Tu, W. G.; Guan, Z. J.; Cao, D. P.; Zou, Z. G. MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. Chemsuschem 2016, 9, 1003-1009.
[34]
Gigot, A.; Fontana, M.; Serrapede, M.; Castellino, M.; Bianco, S.; Armandi, M.; Bonelli, B.; Pirri, C. F.; Tresso, E.; Rivolo, P. Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl. Mater. Interfaces 2016, 8, 32842-32852.
[35]
Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434-6443.
[36]
Pramanik, S.; Bhandari, S.; Chattopadhyay, A. Zinc quinolate complex decorated CuInS2/ZnS core/shell quantum dots for white light emission. J. Mater. Chem. C 2017, 5, 7291-7296.
[37]
Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nano 2015, 9, 521-531.
[38]
Xiong, Y. S.; Deng, K.; Jia, Y. Y.; He, L. C.; Chang, L.; Zhi, L. J.; Tang, Z. Y. Crucial role of anions on arrangement of Cu2S nanocrystal superstructures. Small 2014, 10, 1523-1528.
[39]
Tian, Y.; Wang, L. G.; Tang, H. Q.; Zhou, W. W. Ultrathin two-dimensional β-In2S3 nanocrystals: Oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 2015, 3, 11294-11301.
[40]
de Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152-1162.
[41]
Yang, P.; Shi, L. J.; Zhang, J. M.; Liu, G. B.; Yang, S. A.; Guo, W.; Yao, Y. G. Tuning to the band gap by complex defects engineering: Insights from hybrid functional calculations in CuInS2. J. Phys. D: Appl. Phys. 2018, 51, 025105.
[42]
Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 2010, 4, 5253-5262.
[43]
Cai, C. Q.; Zhai, L. L.; Wu, Q. Q.; Ma, Y. H.; Zhang, L. J.; Yang, Y.; Zou, C.; Huang, S. M. Tailoring defects of CuInS2 quantum dots for sensitized solar cells. J. Alloys Compd. 2017, 719, 227-235.
[44]
Zhang, S. B.; Wei, S. H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 1998, 57, 9642-9656.
[45]
Zhao, L.; Hong, C. C.; Lin, L. X.; Wu, H. P.; Su, Y. W.; Zhang, X. B.; Liu, A. P. Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon 2017, 116, 223-231.
[46]
Wang, Y.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699-2711.
[47]
Tian, L.; Li, J. Y.; Liang, F.; Wang, J. K.; Li, S. S.; Zhang, H. J.; Zhang, S. W. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B: Environ. 2018, 225, 307-313.
[48]
Xiao, X.; Zhang, W. D.; Yu, J. Y.; Sun, Y. J.; Zhang, Y. X.; Dong, F. Mechanistic understanding of ternary Ag/AgCl@La(OH)3 nanorods as novel visible light plasmonic photocatalysts. Catal. Sci. Technol. 2016, 6, 5003-5010.
[49]
Wang, X. W.; Li, Y. N.; Wang, M. R.; Li, W. J.; Chen, M. F.; Zhao, Y. Synthesis of tunable ZnS-CuS microspheres and visible-light photoactivity for rhodamine B. New J. Chem. 2014, 38, 4182-4189.
[50]
Lai, C.; Zhang, M. M.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Qin, L.; Liu, X. G.; Yi, H.; Cheng, M.; Li, L. et al. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 2019, 358, 891-902.
[51]
Zhao, Y. Y.; Kuai, L.; Geng, B. Y. Low-cost and highly efficient composite visible light-driven Ag-AgBr/γ-Al2O3 plasmonic photocatalyst for degrading organic pollutants. Catal. Sci. Technol. 2012, 2, 1269-1274.
[52]
Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.
[53]
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296-336.
[54]
Zhang, X. J.; Guo, Y. C.; Tian, J.; Sun, B. T.; Liang, Z. Q.; Xu, X. S.; Cui, H. Z. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity. Appl. Catal. B: Environ. 2018, 232, 355-364.
Nano Research
Pages 583-590
Cite this article:
Li H, Li W, Li W, et al. Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Research, 2020, 13(2): 583-590. https://doi.org/10.1007/s12274-020-2665-4
Topics:

907

Views

25

Crossref

N/A

Web of Science

25

Scopus

3

CSCD

Altmetrics

Received: 31 October 2019
Revised: 28 December 2019
Accepted: 18 January 2020
Published: 04 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return