Journal Home > Volume 13 , Issue 3

Cisplatin is a widely applied therapeutics for the treatment of osteosarcoma. However, its clinical applications have been hindered due to low efficacy and bioavailability, and particularly frequent emergence of reactive oxygen species (ROS)-decrease induced drug resistance. The transcription factor NF-E2-related factor 2 (Nrf2) is increased in cancer patients and induces poor outcome in osteosarcoma treatment, making it a novel target to improve the efficacy of chemotherapy. Herein, a hyaluronidase-responsive multi-layer liposome (HLCN) for co-delivery of cisplatin and Nrf2 siRNA (siNrf2) is developed. It is composed of Vpr52-96 modified liposome covered with hyaluronic acid (HA). HLCN selectively accumulates in osteosarcoma by targeting tumor-specific CD44, and can be degraded by endosomal hyaluronidase to generate cationic liposome, which promotes the endosomal escape of Vpr52-96, cisplatin and siNrf2. HLCN can effectively decrease Nrf2 level, promote ROS generation, activate itochondrial apoptotic pathway, and consequently enhance anticancer efficacy of cisplatin. Particularly, HLCN shows high cytotoxicity to osteosarcoma cells with an IC50 value of about 1 μM, which is four-fold lower than liposomal cisplatin (IC50 4 μM), indicating that Nrf2 silence can significantly improve cisplatin sensitivity in cancer cells. Importantly, HLCN can remarkably inhibit tumor growth in the xenograft osteosarcoma mice with minimal systemic adverse effects. Therefore, this novel stimuli-responsive combination therapy of cisplatin and siNrf2 provides a promising strategy for the treatment of osteosarcoma.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stimuli-responsive combination therapy of cisplatin and Nrf2 siRNA for improving antitumor treatment of osteosarcoma

Show Author's information Ting-Ting Gu1,§Chengjun Li2,§( )Yurui Xu1,§Lei Zhang1Xue Shan1Xinyu Huang1Leilei Guo1Kerong Chen1Xiaojian Wang3Haixiong Ge1( )Xinghai Ning1,4( )
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Jinling Hospital, Department of Orthopedics, School of medicine, Nanjing University, Nanjing 210002, China
Institute of advanced synthesis, Nanjing Tech University, Nanjing 210093, China
Chemstry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China

§ Ting-Ting Gu, Chengjun Li, and Yurui Xu contributed equally to this work.

Abstract

Cisplatin is a widely applied therapeutics for the treatment of osteosarcoma. However, its clinical applications have been hindered due to low efficacy and bioavailability, and particularly frequent emergence of reactive oxygen species (ROS)-decrease induced drug resistance. The transcription factor NF-E2-related factor 2 (Nrf2) is increased in cancer patients and induces poor outcome in osteosarcoma treatment, making it a novel target to improve the efficacy of chemotherapy. Herein, a hyaluronidase-responsive multi-layer liposome (HLCN) for co-delivery of cisplatin and Nrf2 siRNA (siNrf2) is developed. It is composed of Vpr52-96 modified liposome covered with hyaluronic acid (HA). HLCN selectively accumulates in osteosarcoma by targeting tumor-specific CD44, and can be degraded by endosomal hyaluronidase to generate cationic liposome, which promotes the endosomal escape of Vpr52-96, cisplatin and siNrf2. HLCN can effectively decrease Nrf2 level, promote ROS generation, activate itochondrial apoptotic pathway, and consequently enhance anticancer efficacy of cisplatin. Particularly, HLCN shows high cytotoxicity to osteosarcoma cells with an IC50 value of about 1 μM, which is four-fold lower than liposomal cisplatin (IC50 4 μM), indicating that Nrf2 silence can significantly improve cisplatin sensitivity in cancer cells. Importantly, HLCN can remarkably inhibit tumor growth in the xenograft osteosarcoma mice with minimal systemic adverse effects. Therefore, this novel stimuli-responsive combination therapy of cisplatin and siNrf2 provides a promising strategy for the treatment of osteosarcoma.

Keywords: reactive oxygen species (ROS), combination therapy, osteosarcoma, stimuli-responsive liposome, NF-E2-related factor 2 (Nrf2) siRNA (siNrf2)

References(45)

[1]
Moore, D. D.; Luu, H. H. Osteosarcoma. Cancer Treat. Res. 2014, 162, 65-92.
[2]
Gambera, S.; Abarrategi, A.; González-Camacho, F.; Morales-Molina, Á.; Roma, J.; Alfranca, A.; García-Castro, J. Clonal dynamics in osteosarcoma defined by rgb marking. Nat. Commun. 2018, 9, 3994.
[3]
Mirabello, L.; Troisi, R. J.; Savage, S. A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 2009, 125, 229-234.
[4]
Ferrari, S.; Smeland, S.; Mercuri, M.; Bertoni, F.; Longhi, A.; Ruggieri, P.; Alvegard, T. A.; Picci, P.; Capanna, R.; Bernini, G. et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: A joint study by the italian and scandinavian sarcoma groups. J. Clin. Oncol. 2005, 23, 8845-8852.
[5]
Kim, M.; Jung, J. Y.; Choi, S.; Lee, H.; Morales, L. D.; Koh, J. T.; Kim, S. H.; Choi, Y. D.; Choi, C.; Slaga, T. J. et al. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy 2017, 13, 149-168.
[6]
Zhang, Z. Y.; Kuang, G. Z.; Zong, S.; Liu, S.; Xiao, H. H.; Chen, X. S.; Zhou, D. F.; Huang, Y. B. Sandwich-like fibers/sponge composite combining chemotherapy and hemostasis for efficient postoperative prevention of tumor recurrence and metastasis. Adv. Mater. 2018, 30, 1803217.
[7]
Zhou, D. F.; Xiao, H. H.; Meng, F. B.; Li, X. Y.; Li, Y. X.; Jing, X. B.; Huang, Y. B. A polymer-(tandem drugs) conjugate for enhanced cancer treatment. Adv. Healthc. Mater. 2013, 2, 822-827.
[8]
Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239-247.
[9]
Stephan, J. R.; Yu, F. T.; Costello, R. M.; Bleier, B. S.; Nolan, E. M. Oxidative post-translational modifications accelerate proteolytic degradation of calprotectin. J. Am. Chem. Soc. 2018, 140, 17444-17455.
[10]
Gorrini, C.; Harris, I. S.; Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931-947.
[11]
Kim, H. J.; Lee, J. H.; Kim, S. J.; Oh, G. S.; Moon, H. D.; Kwon, K. B.; Park, C.; Park, B. H.; Lee, H. K.; Chung, S. Y. et al. Roles of nadph oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J. Neurosci. 2010, 30, 3933-3946.
[12]
Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 2017, 17, 928-937.
[13]
Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749-762.
[14]
Chen, Y. F.; Wei, Y. Y.; Yang, C. C.; Liu, C. J.; Yeh, L. Y.; Chou, C. H.; Chang, K. W.; Lin, S. C. miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2a. Redox Biol. 2019, 22, 101140.
[15]
Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479-496.
[16]
Rojo de la Vega, M.; Chapman, E.; Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 2018, 34, 21-43.
[17]
DeNicola, G. M.; Karreth, F. A.; Humpton, T. J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K. H.; Yeo, C. J.; Calhoun, E. S. et al. Oncogene-induced Nrf2 transcription promotes ros detoxification and tumorigenesis. Nature 2011, 475, 106-109.
[18]
Jaramillo, M. C.; Zhang, D. D. The emerging role of the Nrf2-keap1 signaling pathway in cancer. Genes Dev. 2013, 27, 2179-2191.
[19]
Roh, J. L.; Kim, E. H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017, 11, 254-262.
[20]
Syu, J. P.; Chi, J. T.; Kung, H. N. Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget 2016, 7, 14659-14672.
[21]
Park, J. Y.; Kim, Y. W.; Park, Y. K. Nrf2 expression is associated with poor outcome in osteosarcoma. Pathology 2012, 44, 617-621.
[22]
Yan, L.; Hu, R.; Tu, S.; Cheng, W. J.; Zheng, Q.; Wang, J. W.; Kan, W. S.; Ren, Y. J. Emodin mitigates the oxidative stress induced by cisplatin in osteosarcoma MG63 cells. Oncol. Lett. 2016, 12, 1981-1985.
[23]
Li, P. C.; Tu, M. J.; Ho, P. Y.; Jilek, J. L.; Duan, Z. J.; Zhang, Q. Y.; Yu, A. X.; Yu, A. M. Bioengineered NRF2-siRNA is effective to interfere with NRF2 pathways and improve chemosensitivity of human cancer cells. Drug Metab. Dispos. 2018, 46, 2-10.
[24]
Khvorova, A.; Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017, 35, 238-248.
[25]
Setten, R. L.; Rossi, J. J.; Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421-446.
[26]
Cheng, L.; Yan, B.; Jiang, Z. D.; Chen, K.; Zhou, C. C.; Cao, J. Y.; Qian, W. K.; Li, J.; Sun, L. K.; Ma, Q. Y. et al. Resveratrol-induced downregulation of NAF-1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 signaling pathways. Oxid. Med. Cell Longev 2018, 2018, 9482018.
[27]
Yang, Y.; Deng, Y. C.; Chen, X. C.; Zhang, J. H.; Chen, Y. M.; Li, H. C.; Wu, Q. P.; Yang, Z. C.; Zhang, L. Y.; Liu, B. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism. Toxicol. Lett. 2018, 295, 88-98.
[28]
Singer, E.; Judkins, J.; Salomonis, N.; Matlaf, L.; Soteropoulos, P.; McAllister, S.; Soroceanu, L. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis. 2015, 6, e1601.
[29]
Dohmen, C.; Edinger, D.; Fröhlich, T.; Schreiner, L.; Lächelt, U.; Troiber, C.; Rädler, J.; Hadwiger, P.; Vornlocher, H. P.; Wagner, E. Nanosized multifunctional polyplexes for receptor-mediated sirna delivery. ACS Nano 2012, 6, 5198-5208.
[30]
Pan, X. H.; Thompson, R.; Meng, X. J.; Wu, D. C.; Xu, L. Tumor-targeted RNA-interference: Functional non-viral nanovectors. Am. J. Cancer Res. 2011, 1, 25-42.
[31]
Wang, Y. C.; Malcolm, D. W.; Benoit, D. S. W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 2017, 139, 127-138.
[32]
Wojnilowicz, M.; Glab, A.; Bertucci, A.; Caruso, F.; Cavalieri, F. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA. ACS Nano 2019, 13, 187-202.
[33]
Xu, J. S.; Liu, Y. H.; Li, Y. J.; Wang, H.; Stewart, S.; Van der Jeught, K.; Agarwal, P.; Zhang, Y. T.; Liu, S.; Zhao, G. et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 2019, 14, 388-397.
[34]
He, X. W.; Yin, F.; Wang, D. Y.; Xiong, L. H.; Kwok, R. T. K.; Gao, P. F.; Zhao, Z.; Lam, J. W. Y.; Yong, K. T.; Li, Z. G. et al. AIE featured inorganic-organic core@shell nanoparticles for high-efficiency sirna delivery and real-time monitoring. Nano Lett. 2019, 19, 2272-2279.
[35]
Xu, C. F.; Li, D. D.; Cao, Z. T.; Xiong, M. H.; Yang, X. Z.; Wang, J. Facile hydrophobization of siRNA with anticancer drug for non-cationic nanocarrier-mediated systemic delivery. Nano Lett. 2019, 19, 2688-2693.
[36]
Chi, Y. Y.; Yin, X. L.; Sun, K. X.; Feng, S. S.; Liu, J. H.; Chen, D. Q.; Guo, C. Y.; Wu, Z. M. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J. Controlled Release 2017, 261, 113-125.
[37]
Mödder, U. I.; Oursler, M. J.; Khosla, S.; Monroe, D. G. Wnt10b activates the wnt, notch, and NFκb pathways in u2os osteosarcoma cells. J. Cell. Biochem. 2011, 112, 1392-1402.
[38]
Barille, S.; Collette, M.; Bataille, R.; Amiot, M. Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 1995, 86, 3151-3159.
[39]
Jacotot, E.; Ferri, K. F.; El Hamel, C.; Brenner, C.; Druillennec, S.; Hoebeke, J.; Rustin, P.; Métivier, D.; Lenoir, C.; Geuskens, M. et al. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J. Exp. Med. 2001, 193, 509-519.
[40]
Kübler, J.; Kirschner, S.; Hartmann, L.; Welzel, G.; Engelhardt, M.; Herskind, C.; Veldwijk, M. R.; Schultz, C.; Felix, M.; Glatting, G. et al. The HIV-derived protein Vpr52-96 has anti-glioma activity in vitro and in vivo. Oncotarget 2016, 7, 45500-45512.
[41]
Schüler, W.; Wecker, K.; de Rocquigny, H.; Baudat, Y.; Sire, J.; Roques, B. P. Nmr structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein vpr: Molecular insights into its biological functions. J. Mol. Biol. 1999, 285, 2105-2117.
[42]
Kichler, A.; Pages, J. C.; Leborgne, C.; Druillennec, S.; Lenoir, C.; Coulaud, D.; Delain, E.; Le Cam, E.; Roques, B. P.; Danos, O. Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R. J. Virol. 2000, 74, 5424-5431.
[43]
Gu, T. T.; Song, L.; Chen, T. Y.; Wang, X.; Zhao, X. J.; Ding, X. Q.; Yang, Y. Z.; Pan, Y.; Zhang, D. M.; Kong, L. D. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin. Mol. Nutr. Food Res. 2017, 61, 1600760.
[44]
Rinkenauer, A. C.; Schallon, A.; Gunther, U.; Wagner, M.; Betthausen, E.; Schubert, U. S.; Schacher, F. H. A paradigm change: Efficient transfection of human leukemia cells by stimuli-responsive multicompartment micelles. ACS Nano 2013, 7, 9621-9631.
[45]
Luo, Z.; Cai, K. Y.; Hu, Y.; Li, J. H.; Ding, X. W.; Zhang, B. L.; Xu, D. W.; Yang, W. H.; Liu, P. Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater. 2012, 24, 431-435.
File
12274_2020_2660_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2019
Revised: 13 January 2020
Accepted: 14 January 2020
Published: 18 March 2020
Issue date: March 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0802800), the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (No. BE2019002), the Medical Key Young Talents Programs of Jiangsu Province (No. QNRC2016915), "The Six Top Talents" of Jiangsu Province (No. WSW-112), the Fundamental Research Funds for the Central Universities (No. 021314380120), the National Key Research and Development Program of China (No. 2018YFB1105400), the National Natural Science Foundation of China (No. 21708019), and Natural Science Foundation of Jiangsu (No. BK20170987).

Return