Journal Home > Volume 13 , Issue 2

Taking the full advantage of the conformal growth characterizing atomic layer deposition (ALD), the possibility to grow Co thin films, with thickness from several tens down to few nanometers on top of a granular topological insulator (TI) Sb2Te3 film, exhibiting a quite high surface roughness (2-5 nm), was demonstrated. To study the Co growth on the Sb2Te3 substrate, we performed simultaneous Co depositions also on sputtered Pt substrates for comparison. We conducted a thorough chemical-structural characterization of the Co/Sb2Te3 and Co/Pt heterostructures, confirming for both cases, not only an excellent conformality, but also the structural continuity of the Co layers. X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM) analyses evidenced that Co on Sb2Te3 grows preferentially oriented along the [00ℓ] direction, following the underlying rhombohedric substrate. Differently, Co crystallizes in a cubic phase oriented along the [111] direction when deposited on Pt. This work shows that, in case of deposition of crystalline materials, the ALD surface selectivity and conformality can be extended to the definition of local epitaxy, where in-plane ordering of the crystal structure and mosaicity of the developed crystallized grains are dictated by the underlying substrate. Moreover, a highly sharp and chemically-pure Co/Sb2Te3 interface was evidenced, which is promising for the application of this growth process for spintronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

ALD growth of ultra-thin Co layers on the topological insulator Sb2Te3

Show Author's information Emanuele Longo1,2Roberto Mantovan1( )Raimondo Cecchini1Michael D. Overbeek3Massimo Longo1Giovanna Trevisi4Laura Lazzarini4Graziella Tallarida1Marco Fanciulli2Charles H. Winter3Claudia Wiemer1( )
CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza (MB) 20864, Italy
Università degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via R. Cozzi 55, Milano 20125, Italy
Department of chemistry, Wayne State University, Detroit, Michigan 48202, USA
CNR-IMEM, Parco Area delle Scienze 37/A, Parma 43124, Italy

Abstract

Taking the full advantage of the conformal growth characterizing atomic layer deposition (ALD), the possibility to grow Co thin films, with thickness from several tens down to few nanometers on top of a granular topological insulator (TI) Sb2Te3 film, exhibiting a quite high surface roughness (2-5 nm), was demonstrated. To study the Co growth on the Sb2Te3 substrate, we performed simultaneous Co depositions also on sputtered Pt substrates for comparison. We conducted a thorough chemical-structural characterization of the Co/Sb2Te3 and Co/Pt heterostructures, confirming for both cases, not only an excellent conformality, but also the structural continuity of the Co layers. X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM) analyses evidenced that Co on Sb2Te3 grows preferentially oriented along the [00ℓ] direction, following the underlying rhombohedric substrate. Differently, Co crystallizes in a cubic phase oriented along the [111] direction when deposited on Pt. This work shows that, in case of deposition of crystalline materials, the ALD surface selectivity and conformality can be extended to the definition of local epitaxy, where in-plane ordering of the crystal structure and mosaicity of the developed crystallized grains are dictated by the underlying substrate. Moreover, a highly sharp and chemically-pure Co/Sb2Te3 interface was evidenced, which is promising for the application of this growth process for spintronics.

Keywords: atomic layer deposition, metal organic chemical vapor deposition, X-ray diffraction, spintronics, Co-fcc, Co-hcp, antimony telluride

References(26)

[1]
Knoops, H. C. M.; Potts, S. E.; Bol, A. A.; Kessels, W. M. M. Atomic layer deposition. In Handbook of Crystal Growth: Thin Films and Epitaxy; 2nd ed. Kuech, T. F., Ed.; Elsevier: Waltham, MA; UK, 2015; pp 1101-1134.
DOI
[2]
Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 2016, 539, 509-517.
[3]
Peranio, N.; Winkler, M.; Bessas, D.; Aabdin, Z.; König, J.; Böttner, H.; Hermann, R. P.; Eibl, O. Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films. J. Alloys Compd. 2012, 521, 163-173.
[4]
Wang, Y.; Zhu, D. P.; Wu, Y.; Yang, Y. M.; Yu, J. W.; Ramaswamy, R.; Mishra, R.; Shi, S. Y.; Elyasi, M.; Teo, K. L. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 2017, 8, 1364.
[5]
Mellnik, A. R.; Lee, J. S.; Richardella, A.; Grab, J. L.; Mintun, P. J.; Fischer, M. H.; Vaezi, A.; Manchon, A.; Kim, E. A.; Samarth, N. et al. Spin-transfer torque generated by a topological insulator. Nature 2014, 511, 449-451.
[6]
Longo, M.; Cecchi, S.; Selmo, S.; Fanciulli, M.; Wiemer, C.; Battaglia, J. L.; Saci, A.; Kusiak, A. MOCVD growth and thermal analysis of Sb2Te3 thin films and nanowires. In Proceedings of 2015 1st Workshop Nanotechnology in Instrumentation and Measurement, Lecce, Italy, 2015, pp 150-154.
DOI
[7]
Cecchini, R.; Mantovan, R.; Wiemer, C.; Nasi, L.; Lazzarini, L.; Longo, M. Weak antilocalization in granular Sb2Te3 thin films deposited by MOCVD. Phys. Status Solidi RRL - Rapid Res. Lett. 2018, 12, 1800155.
[8]
Mantovan, R.; Vangelista, S.; Kutrzeba-Kotowska, B.; Lamperti, A.; Manca, N.; Pellegrino, L.; Fanciulli, M. Fe3-δO4/MgO/Co magnetic tunnel junctions synthesized by full in situ atomic layer and chemical vapour deposition. J. Phys. D: Appl. Phys. 2014, 47, 102002.
[9]
Martin, M. B.; Dlubak, B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; Robertson, J. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 2014, 8, 7890-7895.
[10]
Longo, E.; Wiemer, C.; Cecchini, R.; Longo, M.; Lamperti, A.; Khanas, A.; Zenkevich, A.; Fanciulli, M.; Mantovan, R. Chemical, structural and magnetic properties of the Fe/Sb2Te3 interface. J. Magn. Magn. Mater. 2019, 474, 632-636.
[11]
Walsh, L. A.; Smyth, C. M.; Barton, A. T.; Wang, Q. X.; Che, Z. F.; Yue, R. Y.; Kim, J.; Kim, M. J.; Wallace, R. M.; Hinkle, C. L. Interface chemistry of contact metals and ferromagnets on the topological insulator Bi2Se3. J. Phys. Chem. C 2017, 121, 23551-23563.
[12]
Majumder, S.; Jarvis, K.; Banerjee, S. K.; Kavanagh, K. L. Interfacial reactions at Fe/topological insulator spin contacts. J. Vac. Sci. Technol. B 2017, 35, 04F105.
[13]
Kerrigan, M. M.; Klesko, J. P.; Rupich, S. M.; Dezelah, C. L.; Kanjolia, R. K.; Chabal, Y. J.; Winter, C. H. Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. J. Chem. Phys. 2017, 146, 052813.
[14]
Kerrigan, M. M.; Klesko, J. P.; Winter, C. H. Low temperature, selective atomic layer deposition of cobalt metal films using bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors. Chem. Mater. 2017, 29, 7458-7466.
[15]
Klesko, J. P.; Kerrigan, M. M.; Winter, C. H. Low temperature thermal atomic layer deposition of cobalt metal films. Chem. Mater. 2016, 28, 700-703.
[16]
Taylor, A.; Floyd, R. W. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst. 1950, 3, 285-289.
[17]
Kuznetsov, V. G.; Sokolova, M. A.; Palkina, K. K.; Popova, Z. V. The cobalt-sulfur system. Inorg. Mater. 1965, 1, 617-632.
[18]
Lamperti, A.; Ahn, S. M.; Ocker, B.; Mantovan, R.; Ravelosona, D. Interface width evaluation in thin layered CoFeB/MgO multilayers including Ru or Ta buffer layer by X-ray reflectivity. Thin Solid Films 2013, 533, 79-82.
[19]
Wiemer, C.; Ferrari, S.; Fanciulli, M.; Pavia, G.; Lutterotti, L. Combining grazing incidence X-ray diffraction and X-ray reflectivity for the evaluation of the structural evolution of HfO2 thin films with annealing. Thin Solid Films 2014, 450, 134-137.
[20]
Ono, L. K.; Yuan, B.; Heinrich, H.; Cuenya, B. R. Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: Support effects. J. Phys. Chem. C 2010, 114, 22119-22133.
[21]
Ko, Y. K.; Park, D. S.; Seo, B. S.; Yang, H. J.; Shin, H. J.; Kim, J. Y.; Lee, J. H.; Lee, W. H.; Reucroft, P. J.; Lee, J. G. Studies of cobalt thin films deposited by sputtering and MOCVD. Mater. Chem. Phys. 2003, 80, 560-564.
[22]
Dynowska, E.; Pelka, J. B.; Klinger, D.; Minikayev, R.; Bartnik, A.; Dluzewski, P.; Jakubowski, M.; Klepka, M.; Petruczik, A.; Seeck, O. H. et al. Structural investigation of ultrathin Pt/Co/Pt trilayer films under EUV irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2015, 364, 33-39.
[23]
Singh, M.; Barkei, M.; Inden, G.; Bhan, S. High-temperature X-ray diffraction study on Co75 Sn25 alloy. Phys. Status Solidi A: Applied Research, 1985, 87, 165-168.
[24]
Delabie, A.; Puurunen, R. L.; Brijs, B.; Caymax, M.; Conard, T.; Onsia, B.; Richard, O.; Vandervorst, W.; Zhao, C.; Heyns, M. M. et al. Atomic layer deposition of hafnium oxide on germanium substrates. J. Appl. Phys. 2005, 97, 064104.
[25]
Debernardi, A.; Wiemer, C.; Fanciulli, M. Epitaxial phase of hafnium dioxide for ultrascaled electronics. Phys. Rev. B 2007, 76, 155405.
[26]
Ohtake, M.; Yabuhara, O.; Higuchi, J.; Futamoto, M. Preparation and characterization of Co single-crystal thin films with hcp, fcc and bcc structures. J. Appl. Phys. 2011, 109, 07C105.
File
12274_2020_2657_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2019
Revised: 02 January 2020
Accepted: 13 January 2020
Published: 13 February 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We acknowledge the MP1402-Hooking together the European research in atomic layer deposition (HERALD) COST action and the Horizon 2020 project SKYTOP "Skyrmion-Topological Insulator and Weyl Semimetal Technology" (FETPROACT-2018-01, n. 824123). Efforts at Wayne State University were supported by the U.S. National Science Foundation (Grant No. CHE-1607973) and EMD Performance Materials.

Return