Journal Home > Volume 13 , Issue 7

Hydraulics provide a unique and widely existed mechanical energy source around us, such as in water or oil pipes, and sewers. Here, a non-contact cylindrical rotating triboelectric nanogenerator (TENG) was developed to harvest the mechanical energy from water flows. Operation of the TENG was based on the non-contact free-rotating between a curved Cu foil and a flexible nanostructured fluorinated ethylene propylene (FEP) polymer film. The free-standing distance between two rotating interfaces avoided abrading of electrode materials. The TENG was able to effectively convert mechanical energy of the water flow into electricity. When driven by water flow, the output voltage and current of the TENG reached 1,670 V and 13.4 μA, respectively. Without any energy storage component, the produced electricity could instantaneously power 12 white light emitting diodes (LEDs) bulbs and a digital timer. This non-contact rotating TENG would provide new opportunities for harvesting energy from many types of hydraulics as a self-sustainable power source for sensing, detection, and protection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics

Show Author's information Nan Zhang1,§Cheng Qin1,§Tianxing Feng1Jun Li2Zhirui Yang1Xiupeng Sun1Erjun Liang1Yanchao Mao1( )Xudong Wang2( )
MOE Key Laboratory of Materials Physics, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

§ Nan Zhang and Cheng Qin contributed equally to this work.

Abstract

Hydraulics provide a unique and widely existed mechanical energy source around us, such as in water or oil pipes, and sewers. Here, a non-contact cylindrical rotating triboelectric nanogenerator (TENG) was developed to harvest the mechanical energy from water flows. Operation of the TENG was based on the non-contact free-rotating between a curved Cu foil and a flexible nanostructured fluorinated ethylene propylene (FEP) polymer film. The free-standing distance between two rotating interfaces avoided abrading of electrode materials. The TENG was able to effectively convert mechanical energy of the water flow into electricity. When driven by water flow, the output voltage and current of the TENG reached 1,670 V and 13.4 μA, respectively. Without any energy storage component, the produced electricity could instantaneously power 12 white light emitting diodes (LEDs) bulbs and a digital timer. This non-contact rotating TENG would provide new opportunities for harvesting energy from many types of hydraulics as a self-sustainable power source for sensing, detection, and protection.

Keywords: triboelectric nanogenerator, mechanical energy, hydraulics, nanowire thin films, non-contact

References(32)

[1]
Lee, S.; Kim, J.; Yun, I.; Bae, G. Y.; Kim, D.; Park, S.; Yi, I. M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468.
[2]
Du, X. Y.; Li, N. W.; Liu, Y. B.; Wang, J. N.; Yuan, Z. Q.; Yin, Y. Y.; Cao, R.; Zhao, S. Y.; Wang, B.; Wang, Z. L. et al. Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Res. 2018, 11, 2862-2871.
[3]
Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313-4322.
[4]
Bao, R. R.; Wang, C. F.; Dong, L.; Shen, C. Y.; Zhao, K.; Pan, C. F. CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale 2016, 8, 8078-8082.
[5]
Bao, R. R.; Wang, C. F.; Peng, Z. C.; Ma, C.; Dong, L.; Pan, C. F. Light-emission enhancement in a flexible and size-controllable ZnO nanowire/organic light-emitting diode array by the piezotronic effect. ACS Photonics 2017, 4, 1344-1349.
[6]
Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018-3023.
[7]
Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062-4073.
[8]
Yang, T. Z.; Liu, T.; Tang, Y.; Hou, S.; Lv, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 2019, 97, 1937-1944.
[9]
Liang, Z. S.; Zhang, L.; Wu, D.; Chen, G. H.; Jiang, F. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong. Water Res. 2019, 154, 94-103.
[10]
Sharma, P.; Lao, L. Y.; Falcone, G. A microwave cavity resonator sensor for water-in-oil measurements. Sens. Actuators B: Chem. 2018, 262, 200-210.
[11]
Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481-2491.
[12]
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.
[13]
Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 2018, 12, 6156-6162.
[14]
Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.
[15]
Tang, Y. J.; Zhou, H.; Sun, X. P.; Feng, T. X.; Zhao, X. Y.; Wang, Z. P.; Liang, E. J.; Mao, Y. C. Cotton-based naturally wearable power source for self-powered personal electronics. J. Mater. Sci. 2020, 55, 2462-2470.
[16]
Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Rob. 2018, 3, eaat2516.
[17]
Mao, Y. C.; Zhang, N.; Tang, Y. J.; Wang, M.; Chao, M. J.; Liang, E. J. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 2017, 9, 14499-14505.
[18]
Wang, M.; Zhang, N.; Tang, Y. J.; Zhang, H.; Ning, C.; Tian, L.; Li, W. H.; Zhang, J. H.; Mao, Y. C.; Liang, E. J. Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 2017, 5, 12252-12257.
[19]
Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X.; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143-19150.
[20]
Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human-machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.
[21]
Mao, Y. C.; Geng, D. L.; Liang, E. J.; Wang, X. D. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227-234.
[22]
Wang, C. S.; Xi, Y.; Wang, M. J.; Zhang, C. S.; Wang, X.; Yang, Q.; Li, W. L.; Hu, C. G.; Zhang, D. Z. Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 2016, 28, 115-123.
[23]
Dudem, B.; Kim, D. H.; Yu, J. S. Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy. Nano Res. 2018, 11, 101-113.
[24]
Yang, H. M.; Deng, M. M.; Tang, Q.; He, W. C.; Hu, C. G.; Xi, Y.; Liu, R. C.; Wang, Z. L. A nonencapsulative pendulum-like paper- based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 2019, 9, 1901149.
[25]
Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361-6366.
[26]
Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M. H.; Wang, X.; Deng, J. A.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526-6534.
[27]
Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. N. et al. Triboelectric- electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 2018, 10, 54.
[28]
Chen, C.; Wen, Z.; Wei, A. M.; Xie, X. K.; Zhai, N. N.; Wei, X. L.; Peng, M. F.; Liu, Y. N.; Sun, X. H.; Yeow, J. T. W. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 2019, 62, 442-448.
[29]
Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-2824.
[30]
Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031-3038.
[31]
Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2019, 1907893.
[32]
Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577-5584.
Video
12274_2020_2654_MOESM1_ESM.avi
File
12274_2020_2654_MOESM2_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2019
Revised: 31 December 2019
Accepted: 08 January 2020
Published: 12 February 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 51503185 and 11874328), China Postdoctoral Science Foundation (Nos. 2016T90673 and 2015M580636), and Henan Provincial Natural Science Foundation of China (No. 182300410192).

Return