Journal Home > Volume 13 , Issue 2

Transitional metal oxides (TMOs) are important functional materials in silicon-based and thin-film optoelectronics. Here, TMOs are applied in carbon nanotube (CNT)-Si solar cells by spin-coating solutions of metal chlorides that undergo favorable transformation in ambient conditions. An unconventional change in solar cell behavior is observed after coating two particular chlorides (MoCl5 and WCl6, respectively), characterized by an initial severe degradation followed by gradual recovery and then well surpassing the original performance. Detailed analysis reveals that the formation of corresponding oxides (MoO3 and WO3) enables two primary functions on both CNTs (p-type doping) and Si (inducing inversion layer), leading to significant improvement in open-circuit voltage and fill factor, with power conversion efficiencies up to 13.0% (MoO3) and 13.4% (WO3). Further combining with other chlorides to increase the short-circuit current, ultimate cells efficiencies achieve >16% with over 90% retention after 24 h, which are among the highest stable efficiencies reported for CNT-Si solar cells. The transformation of functional layers as demonstrated here has profound influence on the device characteristics, and represents a potential strategy in low-cost manufacturing of next-generation high efficiency photovoltaics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improving CNT-Si solar cells by metal chloride-to-oxide transformation

Show Author's information Huaisheng Wu1Xuewei Zhao1Yizeng Wu1Qinghuan Ji1Linxiu Dai1Yuanyuan Shang2Anyuan Cao1( )
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
School of Physical and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Abstract

Transitional metal oxides (TMOs) are important functional materials in silicon-based and thin-film optoelectronics. Here, TMOs are applied in carbon nanotube (CNT)-Si solar cells by spin-coating solutions of metal chlorides that undergo favorable transformation in ambient conditions. An unconventional change in solar cell behavior is observed after coating two particular chlorides (MoCl5 and WCl6, respectively), characterized by an initial severe degradation followed by gradual recovery and then well surpassing the original performance. Detailed analysis reveals that the formation of corresponding oxides (MoO3 and WO3) enables two primary functions on both CNTs (p-type doping) and Si (inducing inversion layer), leading to significant improvement in open-circuit voltage and fill factor, with power conversion efficiencies up to 13.0% (MoO3) and 13.4% (WO3). Further combining with other chlorides to increase the short-circuit current, ultimate cells efficiencies achieve >16% with over 90% retention after 24 h, which are among the highest stable efficiencies reported for CNT-Si solar cells. The transformation of functional layers as demonstrated here has profound influence on the device characteristics, and represents a potential strategy in low-cost manufacturing of next-generation high efficiency photovoltaics.

Keywords: carbon nanotube (CNT)-Si solar cell, chloride to oxide transformation, MoO3 and WO3, inversion layer

References(47)

[1]
Shi, E. Z.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2012, 2, 884.
[2]
Zhao, X. W.; Wu, H. S.; Yang, L. S.; Wu, Y. Z.; Sun, Y. P.; Shang, Y. Y.; Cao, A. Y. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon 2019, 147, 164-171.
[3]
Tune, D. D.; Shirae, H.; Lami, V.; Headrick, R. J.; Pasquali, M.; Vaynzof, Y.; Noda, S.; Hobbie, E. K.; Flavel, B. S. Stability of chemically doped nanotube-silicon heterojunction solar cells: Role of oxides at the carbon-silicon interface. ACS Appl. Energy Mater. 2019, 2, 5925-5932.
[4]
Bat-Erdene, M.; Batmunkh, M.; Tawfik, S. A.; Fronzi, M.; Ford, M. J.; Shearer, C. J.; Yu, L. P.; Dadkhah, M.; Gascooke, J. R.; Gibson, C. T. et al. Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv. Funct. Mater. 2017, 27, 1704488.
[5]
Yu, L. P.; Batmunkh, M.; Grace, T.; Dadkhah, M.; Shearer, C.; Shapter, J. Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube-silicon heterojunction solar cells. J. Mater. Chem. A 2017, 5, 8624-8634.
[6]
Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776-1781.
[7]
Cui, K. H.; Qian, Y.; Jeon, I.; Anisimov, A.; Matsuo, Y.; Kauppinen, E. I.; Maruyama, S. Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv. Energy Mater. 2017, 7, 1700449.
[8]
Yu, L. P.; Tune, D. D.; Shearer, C. J.; Shapter, J. G. Implementation of antireflection layers for improved efficiency of carbon nanotube- silicon heterojunction solar cells. Solar Energy 2015, 118, 592-599.
[9]
Wu, H. S.; Zhao, X. W.; Sun, Y. P.; Yang, L. S.; Zou, M. C.; Zhang, H.; Wu, Y. Z.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. Improving carbon nanotube-silicon solar cells by solution processable metal chlorides. Solar RRL 2019, 3, 1900147.
[10]
Miyazaki, H.; Matsumoto, R.; Katagiri, M.; Yoshida, T.; Ueno, K.; Sakai, T.; Kajita, A. MoCl5 intercalation doping and oxygen passivation of submicrometer-sized multilayer graphene. Jpn. J. Appl. Phys. 2017, 56, 04CP02.
[11]
Nayak, A. K.; Sohn, Y.; Pradhan, D. Facile green synthesis of WO3·H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance. Cryst. Growth Des. 2017, 17, 4949-4957.
[12]
Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408-5427.
[13]
Almora, O.; Gerling, L. G.; Voz, C.; Alcubilla, R.; Puigdollers, J.; Garcia-Belmonte, G. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2017, 168, 221-226.
[14]
Irfan; Zhang, M. L.; Ding, H. J.; Tang, C. W.; Gao, Y. L. Strong interface p-doping and band bending in C60 on MoOx. Org. Electron. 2011, 12, 1588-1593.
[15]
Liu, R. Y.; Lee, S. T.; Sun, B. Q. 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007-6012.
[16]
Gerling, L. G.; Mahato, S.; Morales-Vilches, A.; Masmitja, G.; Ortega, P.; Voz, C.; Alcubilla, R.; Puigdollers, J. Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 2016, 145, 109-115.
[17]
Gerling, L. G.; Voz, C.; Alcubilla, R.; Puigdollers, J. Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells. J. Mater. Res. 2017, 32, 260-268.
[18]
Pérez-del-Rey, D.; Gil-Escrig, L.; Zanoni, K. P. S.; Dreessen, C.; Sessolo, M.; Boix, P. P.; Bolink, H. J. Molecular passivation of MoO3: Band alignment and protection of charge transport layers in vacuum-deposited perovskite solar cells. Chem. Mater. 2019, 31, 6945-6949.
[19]
Qiu, K. F.; Xie, Q.; Qiu, D. P.; Cai, L.; Wu, W. L.; Lin, W. J.; Yao, Z. R.; Ai, B.; Liang, Z. C.; Shen, H. Power-loss analysis of a dopant-free ZnS/p-Si heterojunction solar cell with WO3 as hole-selective contact. Solar Energy 2018, 165, 35-42.
[20]
Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique. Appl. Surf. Sci. 2015, 357, 1089-1096.
[21]
Malm, J.; Sajavaara, T.; Karppinen, M. Atomic layer deposition of WO3 thin films using W(CO)6 and O3 precursors. Chem. Vap. Deposit. 2012, 18, 245-248.
[22]
Diskus, M.; Nilsen, O.; Fjellvåg, H. Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 2011, 21, 705-710.
[23]
Girotto, C.; Voroshazi, E.; Cheyns, D.; Heremans, P.; Rand, B. P. Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 2011, 3, 3244-3247.
[24]
Yang, T. B.; Wang, M.; Cao, Y.; Huang, F.; Huang, L.; Peng, J. B.; Gong, X.; Cheng, S. Z. D.; Cao, Y. Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer. Adv. Energy Mater. 2012, 2, 523-527.
[25]
Zilberberg, K.; Trost, S.; Schmidt, H.; Riedl, T. Solution processed vanadium pentoxide as charge extraction layer for organic solar cells. Adv. Energy Mater. 2011, 1, 377-381.
[26]
Choi, H.; Kim, B. S.; Ko, M. J.; Lee, D. K.; Kim, H.; Kim, S. H.; Kim, K. Solution processed WO3 layer for the replacement of PEDOT:PSS layer in organic photovoltaic cells. Org. Electron. 2012, 13, 959-968.
[27]
Ozer, N.; Lampert, C. M. Electrochromic characterization of sol-gel deposited coatings. Sol. Energy Mater. Sol. Cells 1998, 54, 147-156.
[28]
Mu, X. H.; Yu, X. G.; Xu, D. K.; Shen, X. L.; Xia, Z. H.; He, H.; Zhu, H. Y.; Xie, J. S.; Sun, B. Q.; Yang, D. R. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy 2015, 16, 54-61.
[29]
Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305.
[30]
Bader, R. F. W.; Westland, A. D. The electronic spectra of MoCl5 and NbCl5. Can. J. Chem. 1961, 39, 2306-2315.
[31]
Sreedhara, M. B.; Matte, H. S. S. R.; Govindaraj, A.; Rao, C. N. R. Synthesis, characterization, and properties of few-layer MoO3. Chem. Asian J. 2013, 8, 2430-2435.
[32]
Sheng, C. M.; Wang, C.; Wang, H. W.; Jin, C. D.; Sun, Q. F.; Li, S. Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. J. Hazard. Mater. 2017, 328, 127-139.
[33]
Lee, S. H.; Seong, M. J.; Tracy, C. E.; Mascarenhas, A.; Pitts, J. R.; Deb, S. K. Raman spectroscopic studies of electrochromic a-MoO3 thin films. Solid State Ionics 2002, 147, 129-133.
[34]
Zhi, M. Y.; Huang, W. X.; Shi, Q. W.; Wang, M. Z.; Wang, Q. B. Sol-gel fabrication of WO3/RGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 2016, 6, 67488-67494.
[35]
Morales-Luna, M.; Tomás, S. A.; Arvizu, M. A.; Pérez-González, M.; Campos-Gonzalez, E. The evolution of the Mo5+ oxidation state in the thermochromic effect of MoO3 thin films deposited by rf magnetron sputtering. J. Alloys Compd. 2017, 722, 938-945.
[36]
Li, Z. P.; Gao, L.; Zheng, S. SEM, XPS, and FTIR studies of MoO3 dispersion on mesoporous silicate MCM-41 by calcination. Mater. Lett. 2003, 57, 4605-4610.
[37]
Xu, N.; Sun, M.; Cao, Y. W.; Yao, J. N.; Wang, E. G. Influence of pH on structure and photochromic behavior of nanocrystalline WO3 films. Appl. Surf. Sci. 2000, 157, 81-84.
[38]
Stubhan, T.; Li, N.; Luechinger, N. A.; Halim, S. C.; Matt, G. J.; Brabec, C. J. High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer. Adv. Energy Mater. 2012, 2, 1433-1438.
[39]
Zhou, W.; Vavro, J.; Nemes, N. M.; Fischer, J. E.; Borondics, F.; Kamarás, K.; Tanner, D. B. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Phys. Rev. 2005, 71, 205423.
[40]
Kim, K. K.; Bae, J. J.; Park, H. K.; Kim, S. M.; Geng, H. Z.; Park, K. A.; Shin, H. J.; Yoon, S. M.; Benayad, A.; Choi, J. Y. et al. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J. Am. Chem. Soc. 2008, 130, 12757-12761.
[41]
Fuhrer, M. S.; Nygård, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; et al. Crossed nanotube junctions. Science 2000, 288, 494-497.
[42]
Park, S.; Cho, E.; Song, D. Y.; Conibeer, G.; Green, M. A. n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 684-690.
[43]
Balendhran, S.; Deng, J. K.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J. S.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 2013, 25, 109-114.
[44]
Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Palilis, L. C.; Kennou, S.; Sygellou, L.; Soultati, A.; Kostis, I.; Papadimitropoulos, G.; Davazoglou, D. et al. The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and Gap states for application in organic optoelectronics. J. Am. Chem. Soc. 2012, 134, 16178-16187.
[45]
Guo, Y. Z.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110.
[46]
Tress, W.; Inganäs, O. Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current-voltage characteristics. Sol. Energy Mater. Sol. Cells 2013, 117, 599-603.
[47]
Cui, T. X.; Lv, R. T.; Huang, Z. H.; Chen, S. X.; Zhang, Z. X.; Gan, X.; Jia, Y.; Li, X. M.; Wang, K. L.; Wu, D. H. et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J. Mater. Chem. A. 2013, 1, 5736-5740.
File
12274_2020_2648_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2019
Revised: 06 January 2020
Accepted: 08 January 2020
Published: 12 February 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 51672005). H. W. also acknowledges helpful discussions from Lei Zhang, Liusi Yang, Zhiyuan Xia and Yawei Yang.

Return