Journal Home > Volume 13 , Issue 2

One-dimensional titanium dioxide nanorod (TNR)-supported Cu catalysts (2.5 wt.%-12.5 wt.%) were synthesized using deposition-precipitation. X-ray photoelectron spectroscopy, temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support interactions and interfacial active sites that had a profound impact on the catalytic performance. The role of the Cu-TNR interface was investigated by comparing the catalytic activity of Cu-TNR catalysts with that of pure CuO nanoparticles in CO oxidation. The presence of highly dispersed copper species, a high number of interfacial active sites, CO adsorption capacity and surface/lattice oxygen were found to be responsible for the excellent activity of 7.5Cu-TNR (i.e., Cu loading of 7.5 wt.% on TNR). Moreover, the Cu-TNR catalysts followed the Langmuir-Hinshelwood reaction mechanism with 7.5Cu-TNR, exhibiting an apparent activation energy of 44.7 kJ/mol. The TNR-supported Cu catalyst gave the highest interfacial catalytic activity in medium-temperature CO oxidation (120-240 °C) compared to other commonly used supports, including titanium dioxide nanoparticles (TiO2-P25), silica (SiO2) and alumina (Al2O3) in which copper species were nonhomogeneously dispersed. This study confirms that medium-temperature CO oxidation is highly sensitive to the morphology and structure of the supporting material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation

Show Author's information Wasim U. Khan1Season S. Chen2Daniel C. W. Tsang2Wey Yang Teoh3Xijun Hu4Frank L. Y. Lam4( )Alex C. K. Yip1( )
Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

Abstract

One-dimensional titanium dioxide nanorod (TNR)-supported Cu catalysts (2.5 wt.%-12.5 wt.%) were synthesized using deposition-precipitation. X-ray photoelectron spectroscopy, temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support interactions and interfacial active sites that had a profound impact on the catalytic performance. The role of the Cu-TNR interface was investigated by comparing the catalytic activity of Cu-TNR catalysts with that of pure CuO nanoparticles in CO oxidation. The presence of highly dispersed copper species, a high number of interfacial active sites, CO adsorption capacity and surface/lattice oxygen were found to be responsible for the excellent activity of 7.5Cu-TNR (i.e., Cu loading of 7.5 wt.% on TNR). Moreover, the Cu-TNR catalysts followed the Langmuir-Hinshelwood reaction mechanism with 7.5Cu-TNR, exhibiting an apparent activation energy of 44.7 kJ/mol. The TNR-supported Cu catalyst gave the highest interfacial catalytic activity in medium-temperature CO oxidation (120-240 °C) compared to other commonly used supports, including titanium dioxide nanoparticles (TiO2-P25), silica (SiO2) and alumina (Al2O3) in which copper species were nonhomogeneously dispersed. This study confirms that medium-temperature CO oxidation is highly sensitive to the morphology and structure of the supporting material.

Keywords: CO oxidation, nanorod, supported catalysts, oxygen species, interfacial active sites

References(66)

[1]
Lykaki, M.; Pachatouridou, E.; Carabineiro, S. A. C.; Iliopoulou, E.; Andriopoulou, C.; Kallithrakas-Kontos, N.; Boghosian, S.; Konsolakis, M. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in co oxidation by Cu/CeO2 catalysts. Appl. Catal. B-Environ. 2018, 230, 18-28.
[2]
Bratan, V.; Munteanu, C.; Hornoiu, C.; Vasile, A.; Papa, F.; State, R.; Preda, S.; Culita, D.; Ionescu, N. I. CO oxidation over Pd supported catalysts—In situ study of the electric and catalytic properties. Appl. Catal. B-Environ. 2017, 207, 166-173.
[3]
Harzandi, A. M.; Tiwari, J. N.; Lee, H. S.; Jeon, H.; Cho, W. J.; Lee, G.; Baik, J.; Kwak, J. H.; Kim, K. S. Efficient CO oxidation by 50-facet Cu2O nanocrystals coated with CuO nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 2495-2499.
[4]
Setvin, M.; Buchholz, M.; Hou, W. Y.; Zhang, C.; Stöger, B.; Hulva, J.; Simschitz, T.; Shi, X.; Pavelec, J.; Parkinson, G. S. et al. A multitechnique study of CO adsorption on the TiO2 anatase (101) surface. J. Phys. Chem. C 2015, 119, 21044-21052.
[5]
Hossain, S. T.; Almesned, Y.; Zhang, K. F.; Zell, E. T.; Bernard, D. T.; Balaz, S.; Wang, R. G. Support structure effect on co oxidation: A comparative study on SiO2 nanospheres and CeO2 nanorods supported CuOx catalysts. Appl. Surf. Sci. 2018, 428, 598-608.
[6]
Baharudin, L.; Yip, A. C. K.; Golovko, V. B.; Polson, M. I. J.; Watson, M. J. CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water-gas shift reaction. Chem. Eng. J. 2019, 377, 120278.
[7]
Li, D.; Chen, S. L.; You, R.; Liu, Y. X.; Yang, M.; Cao, T.; Qian, K.; Zhang, Z. H.; Tian, J.; Huang, W. X. Titania-morphology-dependent dual-perimeter-sites catalysis by Au/TiO2 catalysts in low-temperature CO oxidation. J. Catal. 2018, 368, 163-171.
[8]
Grunwaldt, J. D.; Baiker, A. Gold/titania interfaces and their role in carbon monoxide oxidation. J. Phys. Chem. B 1999, 103, 1002-1012.
[9]
Wang, Y.; Widmann, D.; Heenemann, M.; Diemant, T.; Biskupek, J.; Schlögl, R.; Behm, R. J. The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. J. Catal. 2017, 354, 46-60.
[10]
Li, L. Y.; Han, W. L.; Dong, F.; Zong, L. Y.; Tang, Z. C.; Zhang, J. Y. Controlled pore size of ordered mesoporous Al2O3-supported Mn/Cu catalysts for CO oxidation. Micropor. Mesopor. Mater. 2017, 249, 1-9.
[11]
Peng, S.; Lee, Y. M.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229-234.
[12]
Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868-3880.
[13]
Li, Q. L.; Xie, W.; Chen, G. Q.; Li, Y. F.; Huang, Y. J.; Chen, X. D. The behaviors of ultra-low-gold-loaded catalysts (Au/CeO2) for CO oxidation in the presence of water on the catalysts. Nano Res. 2015, 8, 3075-3084.
[14]
Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83-91.
DOI
[15]
Peterson, E. J.; DeLariva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.
[16]
Wang, K.; Cao, Y. L.; Hu, J. D.; Li, Y. Z.; Xie, J.; Jia, D. Z. Solvent-free chemical approach to synthesize various morphological Co3O4 for CO oxidation. ACS Appl. Mater. Interfaces 2017, 9, 16128-16137.
[17]
Najafishirtari, S.; Kokumai, T. M.; Marras, S.; Destro, P.; Prato, M.; Scarpellini, A.; Brescia, R.; Lak, A.; Pellegrino, T.; Zanchet, D. et al. Dumbbell-like Au0.5Cu0.5@Fe3O4 nanocrystals: Synthesis, characterization, and catalytic activity in co oxidation. ACS Appl. Mater. Interfaces 2016, 8, 28624-28632.
[18]
Zhu, B. L.; Zhang, X. X.; Wang, S. R.; Zhang, S. M.; Wu, S. H.; Huang, W. P. Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation. Micropor. Mesopor. Mater. 2007, 102, 333-336.
[19]
Camposeco, R.; Castillo, S.; Mejia, I.; Mugica, V.; Carrera, R.; Montoya, A.; Morán-Pineda, M.; Navarrete, J.; Gómez, R. Active TiO2 nanotubes for CO oxidation at low temperature. Catal. Commun. 2012, 17, 81-88.
[20]
Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363-368.
[21]
Shutilov, A. A.; Zenkovets, G. A.; Tsybulya, S. V.; Gavrilov, V. Y.; Kryukova, G. N. Effect of the microstructure of the supported catalysts CuO/TiO2 and CuO/(CeO2-TiO2) on their catalytic properties in carbon monoxide oxidation. Kinet. Catal. 2012, 53, 409-418.
[22]
Pászti, Z.; Hakkel, O.; Keszthelyi, T.; Berkó, A.; Balázs, N.; Bakó, I.; Guczi, L. Interaction of carbon monoxide with Au(111) modified by ion bombardment: A surface spectroscopy study under elevated pressure. Langmuir 2010, 26, 16312-16324.
[23]
Komova, O. V.; Simakov, A. V.; Rogov, V. A.; Kochubei, D. I.; Odegova, G. V.; Kriventsov, V. V.; Paukshtis, E. A.; Ushakov, V. A.; Sazonova, N. N.; Nikoro, T. A. Investigation of the state of copper in supported copper-titanium oxide catalysts. J. Mol. Catal. A-Chem. 2000, 161, 191-204.
[24]
Lu, J. Q.; Sun, C. X.; Li, N.; Jia, A. P.; Luo, M. F. Kinetic study of CO oxidation over CuO/MO2 (M = Si, Ti and Ce) catalysts. Appl. Surf. Sci. 2013, 287, 124-134.
[25]
Boccuzzi, F.; Chiorino, A.; Martra, G.; Gargano, M.; Ravasio, N.; Carrozzini, B. Preparation, characterization, and activity of Cu/TiO2 catalysts. I. Influence of the preparation method on the dispersion of copper in Cu/TiO2. J. Catal. 1997, 165, 129-139.
[26]
Zhu, H. Y.; Wu, Y.; Zhao, X.; Wan, H. Q.; Yang, L. J.; Hong, J. M.; Yu, Q.; Dong, L.; Chen, Y.; Jian, C. et al. Influence of impregnation times on the dispersion of CuO on anatase. J. Mol. Catal. A-Chem. 2006, 243, 24-30.
[27]
Kim, H. Y.; Liu, P. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation. J. Phys. Chem. C 2015, 119, 22985-22991.
[28]
Chen, C. S.; Chen, T. C.; Chen, C. C.; Lai, Y. T.; You, J. H.; Chou, T. M.; Chen, C. H.; Lee, J. F. Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation. Langmuir 2012, 28, 9996-10006.
[29]
Fahim, N. F.; Sekino, T. A novel method for synthesis of titania nanotube powders using rapid breakdown anodization. Chem. Mater. 2009, 21, 1967-1979.
[30]
Goncalves, R. V.; Wojcieszak, R.; Wender, H.; Dias, C. S. B.; Vono, L. L. R.; Eberhardt, D.; Teixeira, S. R.; Rossi, L. M. Easy access to metallic copper nanoparticles with high activity and stability for CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 7987-7994.
[31]
Hossain, S. T.; Azeeva, E.; Zhang, K. F.; Zell, E. T.; Bernard, D. T.; Balaz, S.; Wang, R. G. A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts. Appl. Surf. Sci. 2018, 455, 132-143.
[32]
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160-3163.
[33]
Zhang, R. D.; Teoh, W. Y.; Amal, R.; Chen, B. H.; Kaliaguine, S. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis. J. Catal. 2010, 272, 210-219.
[34]
Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 2003, 91, 256103.
[35]
Razali, M. H.; Noor, A. F. M.; Mohamed, A. R.; Sreekantan, S. Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate. J. Nanomater. 2012, 2012, 962073.
[36]
Yu, X. F.; Wu, N. Z.; Xie, Y. C.; Tang, Y. Q. A monolayer dispersion study of titania-supported copper oxide. J. Mater. Chem. 2000, 10, 1629-1634.
[37]
Guo, X. Z.; Huang, J.; Wang, S. R.; Wang, Y. M.; Zhang, B. L.; Wu, S. H. CuO catalysts supported on porous TiO2 microspheres for low-temperature co oxidation. J. Dispers. Sci. Technol. 2009, 30, 1114-1119.
[38]
Tang, X. L.; Zhang, B. C.; Li, Y.; Xu, Y. D.; Xin, Q.; Shen, W. J. Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal. Today 2004, 93-95, 191-198.
[39]
Han, M. S.; Lee, B. G.; Ahn, B. S.; Moon, D. J.; Hong, S. I. Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analyses. Appl. Surf. Sci. 2003, 211, 76-81.
[40]
Xue, L.; Zhang, C. B.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B-Environ. 2007, 75, 167-174.
[41]
Merino, N. A.; Barbero, B. P.; Grange, P.; Cadús, L. E. La1-xCaxCoO3 perovskite-type oxides: Preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J. Catal. 2005, 231, 232-244.
[42]
Meng, M.; Lin, P.; Fu, Y. The catalytic removal of co and no over Co-Pt(Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations. Catal. Lett. 1997, 48, 213-222.
[43]
Dong, L. H.; Tang, Y. X.; Li, B.; Zhou, L. Y.; Gong, F. Z.; He, H. X.; Sun, B. Z.; Tang, C. J.; Gao, F.; Dong, L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for co oxidation. Appl. Catal. B-Environ. 2016, 180, 451-462.
[44]
Kydd, R.; Teoh, W. Y.; Wong, K.; Wang, Y.; Scott, J.; Zeng, Q. H.; Yu, A. B.; Zou, J.; Amal, R. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv. Funct. Mater. 2009, 19, 369-377.
[45]
Kydd, R.; Ferri, D.; Hug, P.; Scott, J.; Teoh, W. Y.; Amal, R. Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO. J. Catal. 2011, 277, 64-71.
[46]
Chen, H. L.; Zhu, H. Y.; Wu, Y.; Gao, F.; Dong, L.; Zhu, J. J. Dispersion, reduction and catalytic properties of copper oxide supported on Ce0.5Zr0.5O2 solid solution. J. Mol. Catal. A-Chem. 2006, 255, 254-259.
[47]
Zimmer, P.; Tschöpe, A.; Birringer, R. Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J. Catal. 2002, 205, 339-345.
[48]
Kang, M. Y.; Yun, H. J.; Yu, S.; Kim, W.; Kim, N. D.; Yi, J. Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2. J. Mol. Catal. A-Chem. 2013, 368-369, 72-77.
[49]
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, 1992.
[50]
Zhang, M.; Jin, Z. S.; Zhang, J. W.; Guo, X. Y.; Yang, H. J.; Li, W.; Wang, X. D.; Zhang, Z. J. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A-Chem. 2004, 217, 203-210.
[51]
Feng, C. X.; Wang, Y.; Zhang, J. W.; Yu, L. G.; Li, D. L.; Yang, J. J.; Zhang, Z. J. The effect of infrared light on visible light photocatalytic activity: An intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl. Catal. B-Environ. 2012, 113-114, 61-71.
[52]
Zhang, M.; Yu, X. L.; Lu, D. D.; Yang, J. J. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors. Nanoscale Res. Lett. 2013, 8, 543.
[53]
Ro, I.; Liu, Y. F.; Ball, M. R.; Jackson, D. H. K.; Chada, J. P.; Sener, C.; Kuech, T. F.; Madon, R. J.; Huber, G. W.; Dumesic, J. A. Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal. 2016, 6, 7040-7050.
[54]
Zagaynov, I. V.; Naumkin, A. V.; Grigoriev, Y. V. Perspective intermediate temperature ceria based catalysts for CO oxidation. Appl. Catal. B-Environ. 2018, 236, 171-175.
[55]
Dehestaniathar, S.; Khajelakzay, M.; Ramezani-Farani, M.; Ijadpanah-Saravi, H. Modified diatomite-supported CuO-TiO2 composite: Preparation, characterization and catalytic co oxidation. J. Taiwan Inst. Chem. Eng. 2016, 58, 252-258.
[56]
Ro, I.; Sener, C.; Stadelman, T. M.; Ball, M. R.; Venegas, J. M.; Burt, S. P.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. J. Catal. 2016, 344, 784-794.
[57]
Ro, I.; Aragao, I. B.; Brentzel, Z. J.; Liu, Y. F.; Rivera-Dones, K. R.; Ball, M. R.; Zanchet, D.; Huber, G. W.; Dumesic, J. A. Intrinsic activity of interfacial sites for Pt-Fe and Pt-Mo catalysts in the hydrogenation of carbonyl groups. Appl. Catal. B-Environ. 2018, 231, 182-190.
[58]
Ro, I.; Aragao, I. B.; Chada, J. P.; Liu, Y. F.; Rivera-Dones, K. R.; Ball, M. R.; Zanchet, D.; Dumesic, J. A.; Huber, G. W. The role of Pt-FexOy interfacial sites for CO oxidation. J. Catal. 2018, 358, 19-26.
[59]
Kikugawa, M.; Yamazaki, K.; Shinjoh, H. Characterization and catalytic activity of CuO/TiO2-ZrO2 for low temperature CO oxidation. Appl. Catal. A-Gen. 2017, 547, 199-204.
[60]
Huang, T. J.; Tsai, D. H. CO oxidation behavior of copper and copper oxides. Catal. Lett. 2003, 87, 173-178.
[61]
Wu, G. J.; Guan, N. J.; Li, L. D. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601-608.
[62]
Sierra-Pereira, C. A.; Urquieta-González, E. A. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel 2014, 118, 137-147.
[63]
Chen, C. S.; You, J. H.; Lin, J. H.; Chen, Y. Y. Effect of highly dispersed active sites of Cu/TiO2 catalyst on CO oxidation. Catal. Commun. 2008, 9, 2381-2385.
[64]
Song, H. C.; Oh, S.; Kim, S. H.; Lee, S. W.; Moon, S. Y.; Choi, H.; Kim, S. H.; Kim, Y.; Oh, J.; Park, J. Y. The effect of the oxidation states of supported oxides on catalytic activity: CO oxidation studies on Pt/cobalt oxide. Chem. Commun. 2019, 55, 9503-9506.
[65]
Loc, L. C.; Tri, N.; Cuong, H. T.; Anh, H. C.; Thoang, H. S.; Gaidai, N. A.; Agafonov, Y. A.; Lapidus, A. L. Mechanism of carbon monoxide oxidation on supported copper catalysts modified with cerium and platinum. Kinet. Catal. 2015, 56, 774-780.
[66]
Choi, K. I.; Vannice, M. A. CO Oxidation over Pd and Cu Catalysts IV. CO oxidation over Pd and Cu catalysts IV. Prereduced Al2O3-supported copper. J. Catal. 1991, 131, 22-35.
File
12274_2020_2647_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2019
Revised: 05 January 2020
Accepted: 08 January 2020
Published: 23 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors would like to thank the financial support from the Ministry of Business, Innovation & Employment in New Zealand under the MBIE Endeavour "Smart Ideas" grant (UOCX1905).

Return