Journal Home > Volume 13 , Issue 2

Silicon suboxide (SiOx) is considered to be one of the most promising materials for next-generation anode due to its high energy density. For its preparation, the wet-chemistry method is a cost-effective and readily scalable route, while the so-derived SiOx usually shows lower capacity compared with that prepared by high temperature-vacuum evaporation route. Herein, we present an elaborate particle structure design to realize the wet-chemistry preparation of a high-performance SiOx/C nanocomposite. Dandelion-like highly porous SiOx particle coated with conformal carbon layer is designed and prepared. The highly-porous SiOx skeleton provides plenty specific surface for intimate contact with carbon layer to allow a deep reduction of SiOx to a low O/Si ratio at relatively low temperature (700 °C), enabling a high specific capacity. The abundant mesoscale voids effectively accommodate the volume variation of SiOx skeleton, ensuring the high structural stability of SiOx@C during lithiation/delithiation process. Meanwhile, the three-dimensional (3D) conformal carbon layer provides a fast electron/ion transportation, allowing an enhanced electrode reaction kinetics. Owing to the optimized O/Si ratio and well-engineered structure, the prepared SiOx@C electrode delivers an ultra-high capacity (1,115.8 mAh·g-1 at 0.1 A·g-1 after 200 cycles) and ultra-long lifespan (635 mAh·g-1 at 2 A·g-1 after 1,000 cycles). To the best of our knowledge, the achieved combination of ultra-high specific capacity and ultra-long cycling life is unprecedented.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries

Show Author's information Zhaolin Li1Hailei Zhao1,2( )Jie Wang1,2Tianhou Zhang1Boyang Fu1Zijia Zhang1Xin Tao1
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Beijing Key Municipal Laboratory of New Energy Materials and Technologies, Beijing 100083, China

Abstract

Silicon suboxide (SiOx) is considered to be one of the most promising materials for next-generation anode due to its high energy density. For its preparation, the wet-chemistry method is a cost-effective and readily scalable route, while the so-derived SiOx usually shows lower capacity compared with that prepared by high temperature-vacuum evaporation route. Herein, we present an elaborate particle structure design to realize the wet-chemistry preparation of a high-performance SiOx/C nanocomposite. Dandelion-like highly porous SiOx particle coated with conformal carbon layer is designed and prepared. The highly-porous SiOx skeleton provides plenty specific surface for intimate contact with carbon layer to allow a deep reduction of SiOx to a low O/Si ratio at relatively low temperature (700 °C), enabling a high specific capacity. The abundant mesoscale voids effectively accommodate the volume variation of SiOx skeleton, ensuring the high structural stability of SiOx@C during lithiation/delithiation process. Meanwhile, the three-dimensional (3D) conformal carbon layer provides a fast electron/ion transportation, allowing an enhanced electrode reaction kinetics. Owing to the optimized O/Si ratio and well-engineered structure, the prepared SiOx@C electrode delivers an ultra-high capacity (1,115.8 mAh·g-1 at 0.1 A·g-1 after 200 cycles) and ultra-long lifespan (635 mAh·g-1 at 2 A·g-1 after 1,000 cycles). To the best of our knowledge, the achieved combination of ultra-high specific capacity and ultra-long cycling life is unprecedented.

Keywords: anode, mesoporous structure, lithium ion batteries, electrochemical properties, silicon suboxide

References(45)

[1]
Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252-264.
[2]
Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
[3]
Wang, P. Y.; Tian, J.; Hu, J. L.; Zhou, X. J.; Li, C. L. Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 2017, 11, 7390-7400.
[4]
Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.
[5]
Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972-996.
[6]
Franco Gonzalez, A.; Yang, N. H.; Liu, R. S. Silicon anode design for lithium-ion batteries: Progress and perspectives. J. Phys. Chem. C 2017, 121, 27775-27787.
[7]
Qu, F.; Li, C. L.; Wang, Z. M.; Strunk, H. P.; Maier, J. Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 8782-8788.
[8]
Jin, Y.; Zhu, B.; Lu, Z. D.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715.
[9]
Qu, F.; Li, C. L.; Wang, Z. M.; Wen, Y. R.; Richter, G.; Strunk, H. P. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries. Sci. Rep. 2015, 5, 10381.
[10]
Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Chen, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143.
[11]
Zhang, Y. F.; Li, Y. J.; Wang, Z. Y.; Zhao, K. J. Lithiation of SiO2 in Li-ion batteries: In situ transmission electron microscopy experiments and theoretical studies. Nano Lett. 2014, 14, 7161-7170.
[12]
Chang, W. S.; Park, C. M.; Kim, J. H.; Kim, Y. U.; Jeong, G.; Sohn, H. J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895-6899.
[13]
Takezawa, H.; Iwamoto, K.; Ito, S.; Yoshizawa, H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J. Power Sources 2013, 244, 149-157.
[14]
Shi, L.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Jin, Z. Q.; Yang, Y. S. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources 2016, 318, 184-191.
[15]
Yamada, M.; Ueda, A.; Matsumoto, K.; Ohzuku, T. Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO”-carbon composite. J. Electrochem. Soc. 2011, 158, A417-A421.
[16]
Liu, Z. H.; Guan, D. D.; Yu, Q.; Xu, L.; Zhuang, Z. C.; Zhu, T.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 2018, 13, 112-118.
[17]
An, W. L.; Fu, J. J.; Su, J. J.; Wang, L.; Peng, X.; Wu, K.; Chen, Q. Y.; Bi, Y. J.; Gao, B.; Zhang, X. M. Mesoporous Hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes. J. Power Sources 2017, 345, 227-236.
[18]
Li, Z. H.; He, Q.; He, L.; Hu, P.; Li, W.; Yan, H. W.; Peng, X. Z.; Huang, C. Y.; Mai, L. Q. Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J. Mater. Chem. A 2017, 5, 4183-4189.
[19]
Han, M. S.; Yu, J. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J. Power Sources 2019, 414, 435-443.
[20]
Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.
[21]
Zhang, P. J.; Wang, L. B.; Xie, J.; Su, L. W.; Ma, C. A. Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 3776-3782.
[22]
Li, H. H.; Wu, X. L.; Sun, H. Z.; Wang, K.; Fan, C. Y.; Zhang, L. L.; Yang, F. M.; Zhang, J. P. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance. J. Phys. Chem. C 2015, 119, 3495-3501.
[23]
Yu, Q.; Ge, P. P.; Liu, Z. H.; Xu, M.; Yang, W.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J. Mater. Chem. A 2018, 6, 14903-14909.
[24]
Ren, Y. R.; Wu, X. M.; Li, M. Q. Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim. Acta 2016, 206, 328-336.
[25]
Ren, Y. R.; Li, M. Q. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J. Power Sources 2016, 306, 459-466.
[26]
Li, M. Q.; Yu, Y.; Li, J.; Chen, B. L.; Konarov, A.; Chen, P. Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries. J. Power Sources 2015, 293, 976-982.
[27]
Wu, W. J.; Shi, J.; Liang, Y. H.; Liu, F.; Peng, Y.; Yang, H. B. A low-cost and advanced SiOx-C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 13451-13456.
[28]
Li, M. Q.; Zeng, Y.; Ren, Y. R.; Zeng, C. M.; Gu, J. W.; Feng, X. F.; He, H. Y. Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres. J. Power Sources 2015, 288, 53-61.
[29]
Yang, H. W.; Lee, D. I.; Kang, N.; Yoo, J. K.; Myung, S. T.; Kim, J.; Kim, S. J. Highly enhancement of the SiOx nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery. J. Power Sources 2018, 400, 613-620.
[30]
Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731-1742.
[31]
Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557-563.
[32]
Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.
[33]
Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095-14107.
[34]
Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654-2662.
[35]
Park, M. S.; Park, E.; Lee, J.; Jeong, G.; Kim, K. J.; Kim, J. H.; Kim, Y. J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces 2014, 6, 9608-9613.
[36]
Yang, C. W.; Hu, X. G.; Wang, D. L.; Dai, C. S.; Zhang, L.; Jin, H. B.; Agathopoulos, S. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. J. Power Sources 2006, 160, 187-193.
[37]
Balamurugan, A.; Kannan, S.; Selvaraj, V.; Rajeswari, S. Development and spectral characterization of poly(methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater. Artif. Organs 2004, 18, 41-45.
[38]
Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299-305.
[39]
Xu, T.; Wang, Q.; Zhang, J.; Xie, X. H.; Xia, B. J. Green synthesis of dual carbon conductive networks encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19959-19967.
[40]
Zhao, H.; Wang, Z. H.; Lu P.; Jiang, M.; Shi, F. F.; Song, X. Y.; Zheng, Z. Y.; Zhou, X.; Fu, Y. B.; Abdelbast, G. et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2014, 14, 6704-6710.
[41]
Zhao, J.; Lu, Z. D.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 2014, 5, 5088.
[42]
Cao, Z. Y.; Xu, P. Y.; Zhai, H. W.; Du, S. C.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density. Nano Lett. 2016, 16, 7235-7240.
[43]
Liu, D.; Chen, C. R.; Hu, Y. Y.; Wu, J.; Zheng, D.; Xie, Z. Z.; Wang, G. W.; Qu, D. Y.; Li, J. S.; Qu, D. Y. Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochim. Acta 2018, 273, 26-33.
[44]
Gao, C. H.; Zhao, H. L.; Lv, P. P.; Wang, C. M.; Wang, J.; Zhang, T. H.; Xia, Q. Superior cycling performance of SiOx/C composite with arrayed mesoporous architecture as anode material for lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A2216-A2221.
[45]
Lv, P. P.; Zhao, H. L.; Gao, C. H.; Zhang, T. H.; Liu, X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochimi. Acta 2015, 152, 345-351.
File
12274_2020_2644_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 November 2019
Revised: 30 December 2019
Accepted: 07 January 2020
Published: 23 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1637202 and 51634003), the National Key R&D Program of China (No. 2018YFB0905600), and Beijing Municipal Education Commission-Natural Science Foundation Joint Key Project (No. KZ201910005003).

Return