Journal Home > Volume 13 , Issue 7

The lateral incorporation of graphene and hexagonal boron nitride (h-BN) onto a substrate surface creates in-plane h-BN/graphene heterostructures, which have promising applications in novel two-dimensional electronic and photoelectronic devices. The quality of h-BN/graphene domain boundaries depends on their orientation, which is crucial for device performances. Here, the heteroepitaxial growth of graphene along the edges of h-BN domains on Ni(111) surfaces as well as the growth dynamics of h-BN using chemical vapor deposition (CVD) are in situ investigated by surface imaging measurements. The nucleating seed effect of h-BN has been revealed, which contributes to the single orientation of heterostructures with epitaxial stitching. Further, the growth of h-BN prior to that of graphene is essential to obtain high-quality in-plane h-BN/graphene heterostructures on Ni(111). The "compact to fractal" shape transition of h-BN domains appears with the increasing surface concentration of the growth blocks, suggesting that the dynamic growth mechanism follows diffusion-limited aggregation (DLA) but not reaction-limited aggregation (RLA). Our results provide insights into the synthesis of well-defined h-BN/graphene heterostructures and deep understanding of the growth dynamics of h-BN on metal surfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111)

Show Author's information Wei Wei1,§Jiaqi Pan1,§Chanan Euaruksakul2Yang Yang3Yi Cui1( )Qiang Fu3Xinhe Bao3,4( )
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

§ Wei Wei and Jiaqi Pan contributed equally to this work.

Abstract

The lateral incorporation of graphene and hexagonal boron nitride (h-BN) onto a substrate surface creates in-plane h-BN/graphene heterostructures, which have promising applications in novel two-dimensional electronic and photoelectronic devices. The quality of h-BN/graphene domain boundaries depends on their orientation, which is crucial for device performances. Here, the heteroepitaxial growth of graphene along the edges of h-BN domains on Ni(111) surfaces as well as the growth dynamics of h-BN using chemical vapor deposition (CVD) are in situ investigated by surface imaging measurements. The nucleating seed effect of h-BN has been revealed, which contributes to the single orientation of heterostructures with epitaxial stitching. Further, the growth of h-BN prior to that of graphene is essential to obtain high-quality in-plane h-BN/graphene heterostructures on Ni(111). The "compact to fractal" shape transition of h-BN domains appears with the increasing surface concentration of the growth blocks, suggesting that the dynamic growth mechanism follows diffusion-limited aggregation (DLA) but not reaction-limited aggregation (RLA). Our results provide insights into the synthesis of well-defined h-BN/graphene heterostructures and deep understanding of the growth dynamics of h-BN on metal surfaces.

Keywords: graphene, hexagonal boron nitride (h-BN), in-plane heterostructures, growth dynamics

References(54)

[1]
Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
[2]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[3]
Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
[4]
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934-959.
[5]
Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979-2993.
[6]
Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H. et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 2013, 7, 1333-1341.
[7]
Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 2011, 115, 9889-9893.
[8]
Ponomarenko, L. A.; Geim, A. K.; Zhukov, A. A.; Jalil, R.; Morozov, S. V.; Novoselov, K. S.; Grigorieva, I. V.; Hill, E. H.; Cheianov, V. V.; Fal’ko, V. I. et al. Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys. 2011, 7, 958-961.
[9]
Fiori, G.; Betti, A.; Bruzzone, S.; Iannaccone, G. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 2012, 6, 2642-2648.
[10]
Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 2018, 4, 671-689.
[11]
Sutter, P.; Huang, Y.; Sutter, E. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy. Nano Lett. 2014, 14, 4846-4851.
[12]
Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342-6347.
[13]
Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869-4874.
[14]
Drost, R.; Kezilebieke, S.; Ervasti, M. M.; Hämäläinen, S. K.; Schulz, F.; Harju, A.; Liljeroth, P. Synthesis of extended atomically perfect zigzag graphene-boron nitride interfaces. Sci. Rep. 2015, 5, 16741.
[15]
Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430-435.
[16]
Kim, S. M.; Hsu, A.; Araujo, P. T.; Lee, Y. H.; Palacios, T.; Dresselhaus, M.; Idrobo, J. C.; Kim, K. K.; Kong, J. Synthesis of patched or stacked graphene and hBN flakes: A route to hybrid structure discovery. Nano Lett. 2013, 13, 933-941.
[17]
Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119-124.
[18]
Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.
[19]
Lu, G. Y.; Wu, T. R.; Yang, P.; Yang, Y. C.; Jin, Z. H.; Chen, W. B.; Jia, S.; Wang, H. M.; Zhang, G. H.; Su, J. L. et al. Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu-Ni alloy. Adv. Sci. 2017, 4, 1700076.
[20]
Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163-167.
[21]
Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6, 6835.
[22]
Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443-449.
[23]
Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-392.
[24]
Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806-809.
[25]
Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286-289.
[26]
Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91-95.
[27]
Zhang, Z. Y.; Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 1997, 276, 377-383.
[28]
Röder, H.; Bromann, K.; Brune, H.; Kern, K. Diffusion-limited aggregation with active edge diffusion. Phys. Rev. Lett. 1995, 74, 3217-3220.
[29]
Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.
[30]
Chang, T. C.; Hwang, I. S.; Tsong, T. T. Direct observation of reaction-limited aggregation on semiconductor surfaces. Phys. Rev. Lett. 1999, 83, 1191-1194.
[31]
Liu, B. G.; Wu, J.; Wang, E. G.; Zhang, Z. Y. Two-dimensional pattern formation in surfactant-mediated epitaxial growth. Phys. Rev. Lett. 1999, 83, 1195-1198.
[32]
Mok, H. S.; Ebnonnasir, A.; Murata, Y.; Nie, S.; McCarty, K. F.; Ciobanu, C. V.; Kodambaka, S. Kinetics of monolayer graphene growth by segregation on Pd(111). Appl. Phys. Lett. 2014, 104, 101606.
[33]
Mende, P. C.; Gao, Q.; Ismach, A.; Chou, H.; Widom, M.; Ruoff, R.; Colombo, L.; Feenstra, R. M. Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy. Surf. Sci. 2017, 659, 31-42.
[34]
Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506-1519.
[35]
Suzuki, S.; Pallares, R. M.; Hibino, H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation. J. Phys. D Appl. Phys. 2012, 45, 385304.
[36]
Wei, W.; Lin, L.; Zhang, G. H.; Ye, X. Q.; Bin, R.; Meng, C. X.; Ning, Y. X.; Fu, Q.; Bao, X. H. Effect of near-surface dopants on the epitaxial growth of h-BN on metal surfaces. Adv. Mater. Interfaces 2019, 6, 1801906.
[37]
Yang, Y.; Fu, Q.; Wei, M. M.; Bluhm, H.; Bao, X. H. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res. 2015, 8, 227-237.
[38]
Wu, B.; Geng, D. C.; Xu, Z. P.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Self-organized graphene crystal patterns. NPG Asia Mater. 2013, 5, e36.
[39]
Wang, E. G. Atomic-scale study of kinetics in film growth (I). Prog. Phys. 2003, 23, 1-61.
[40]
Zhang, Z. Y.; Chen, X.; Lagally, M. G. Bonding-geometry dependence of fractal growth on metal surfaces. Phys. Rev. Lett. 1994, 73, 1829-1832.
[41]
Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S. Orientation-dependent work function of graphene on Pd(111). Appl. Phys. Lett. 2010, 97, 143114.
[42]
Wei, W.; Meng, J.; Meng, C. X.; Ning, Y. X.; Li, Q. X.; Fu, Q.; Bao, X. H. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species. Appl. Phys. Lett. 2018, 112, 171601.
[43]
Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys. Rev. B 2008, 78, 045409.
[44]
Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.
[45]
Wang, L. F.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. A.; Liu, Y. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858-4864.
[46]
Nie, S.; Bartelt, N. C.; Wofford, J. M.; Dubon, O. D.; McCarty, K. F.; Thürmer, K. Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions. Phys. Rev. B 2012, 85, 205406.
[47]
Kiraly, B.; Iski, E. V.; Mannix, A. J.; Fisher, B. L.; Hersam, M. C.; Guisinger, N. P. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 2013, 4, 2804.
[48]
Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.
[49]
Dong, G. C.; Fourré, E. B.; Tabak, F. C.; Frenken, J. W. M. How boron nitride forms a regular nanomesh on Rh(111). Phys. Rev. Lett. 2010, 104, 096102.
[50]
Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83-115.
[51]
Wu, P.; Jiang, H. J.; Zhang, W. H.; Li, Z. Y.; Hou, Z. H.; Yang, J. L. Lattice mismatch induced nonlinear growth of graphene. J. Am. Chem. Soc. 2012, 134, 6045-6051.
[52]
Pacilé, D.; Leicht, P.; Papagno, M.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Krausert, K.; Zielke, L.; Fonin, M.; Dedkov, Y. S. et al. Artificially lattice-mismatched graphene/metal interface: Graphene/Ni/Ir(111). Phys. Rev. B 2013, 87, 035420.
[53]
Patera, L. L.; Africh, C.; Weatherup, R. S.; Blume, R.; Bhardwaj, S.; Castellarin-Cudia, C.; Knop-Gericke, A.; Schloegl, R.; Comelli, G.; Hofmann, S. et al. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. ACS Nano 2013, 7, 7901-7912.
[54]
Dahal, A.; Addou, R.; Sutter, P.; Batzill, M. Graphene monolayer rotation on Ni(111) facilitates bilayer graphene growth. Appl. Phys. Lett. 2012, 100, 241602.
Video
12274_2020_2638_MOESM1_ESM.avi
12274_2020_2638_MOESM2_ESM.avi
File
12274_2020_2638_MOESM3_ESM.pdf (687 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 November 2019
Revised: 15 December 2019
Accepted: 02 January 2020
Published: 23 January 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21872169), Natural Science Foundation of Jiangsu Province (No. BK20170426). The authors are grateful for the support for Synchrotron Light Research Institute (SLRI) in Thailand, and the help from Ms. Xiao Chen and Mr. Hu Wang with current magnetron sputtering experiments in Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, CAS.

Return