Journal Home > Volume 13 , Issue 5

Doping control has been a key challenge for electronic applications of van der Waals materials. Here, we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic building elements. We characterize the anisotropic electrical transport as a function of ion concentrations and report a widely tunable resistivity up to three orders of magnitude with characteristic concentration dependence corresponding to phase transitions during intercalation. As a further step, we develop both p-type and n-type field effect transistors as well as electrical diodes with high device stability and performance. In addition, enhanced charge mobility from 380 to 820 cm2/(V·s) with the intercalation process is observed and explained as the suppressed neutral impurity scattering based on our ab initio calculations. Our study provides a unique approach to atomically control the electrical properties of van der Waals materials, and may open up new opportunities in developing advanced electronics and physics platforms.


menu
Abstract
Full text
Outline
About this article

Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics

Show Author's information Ming KeHuu Duy NguyenHang FanMan LiHuan WuYongjie Hu( )
School of Engineering and Applied Science, University of California, Los Angeles, California 90095, USA

Abstract

Doping control has been a key challenge for electronic applications of van der Waals materials. Here, we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic building elements. We characterize the anisotropic electrical transport as a function of ion concentrations and report a widely tunable resistivity up to three orders of magnitude with characteristic concentration dependence corresponding to phase transitions during intercalation. As a further step, we develop both p-type and n-type field effect transistors as well as electrical diodes with high device stability and performance. In addition, enhanced charge mobility from 380 to 820 cm2/(V·s) with the intercalation process is observed and explained as the suppressed neutral impurity scattering based on our ab initio calculations. Our study provides a unique approach to atomically control the electrical properties of van der Waals materials, and may open up new opportunities in developing advanced electronics and physics platforms.

Keywords: black phosphorus, nanoelectronics, two-dimensional (2D) materials and heterostructures, field-effect transistors (FETs), diode, tunable properties

References(86)

[1]
Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.
[2]
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
[3]
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
[4]
Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.
[5]
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
[6]
Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.
[7]
Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925-930.
[8]
Hu, Y. J.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2007, 2, 622-625.
[9]
Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240-244.
[10]
Hu, Y. J.; Kuemmeth, F.; Lieber, C. M.; Marcus, C. M. Hole spin relaxation in Ge-Si core-shell nanowire qubits. Nat. Nanotechnol. 2012, 7, 47-50.
[11]
Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 1996, 272, 523-526.
[12]
Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.
[13]
Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62-64.
[14]
Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.
[15]
Kim, P.; Odom, T. W.; Huang, J. L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225-1228.
[16]
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97.
[17]
Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 2002, 35, 1026-1034.
[18]
McEuen, P. L.; Fuhrer, M. S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78-85.
[19]
Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Scienc 2000, 287, 622-626.
[20]
Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C.; Rao, A. M. Carbon nanotubes. In The Physics of Fullerene-Based and Fullerene-Related Materials; Andreoni, W., Ed.; Springer: Dordrecht, 2000; pp 331-379.
DOI
[21]
Kelty, S. P.; Chen, C. C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223-225.
[22]
Chen, C. C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science 1993, 259, 655-658.
[23]
Zhang, J.; Liu, J.; Huang, J. L.; Kim, P.; Lieber, C. M. Creation of nanocrystals through a solid-solid phase transition induced by an STM tip. Science 1996, 274, 757-760.
[24]
Dekker, C.; Tans, S. J.; Geerligs, L. J.; Bezryadin, A.; Wu, J.; Wegner, G.. Towards electrical transport on single molecules. In Atomic and Molecular Wires; Joachim, C.; Roth, S., Eds.; Kluwer Academic Publisher: Boston, 1997.
[25]
Liu, J.; Dai, H. J.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Fullerene “crop circles”. Nature 1997, 385, 780-781.
[26]
Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B. et al. Fullerene pipes. Science 1998, 280, 1253-1256.
[27]
Kelty, S. P.; Lieber, C. M. Scanning tunneling microscopy investigations of the electronic structure of potassium-graphite intercalation compounds. J. Phys. Chem. 1989, 93, 5983-5985.
[28]
Kelty, S. P.; Lieber, C. M. Atomic-resolution scanning-tunneling-microscopy investigations of alkali-metal-graphite intercalation compounds. Phys. Rev. B 1989, 40, 5856-5859.
[29]
Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231-236.
[30]
Lieber, C. Modification and manipulation of layered materials using scanned probe microscopies. In Proceedings of the SPIE 10310, Technology of Proximal Probe Lithography, Bellingham, USA, 1993, p 103100D.
DOI
[31]
Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 2005, 438, 201-204.
[32]
Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229-1232.
[33]
Park, J. U.; Nam, S. W.; Lee, M. S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 2012, 11, 120-125.
[34]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[35]
Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633-14638.
[36]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[37]
Kang, J. S.; Wu, H.; Li, M.; Hu, Y. J. Intrinsic low thermal conductivity and phonon renormalization due to strong anharmonicity of single-crystal tin selenide. Nano Lett. 2019, 19, 4941-4948.
[38]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der waals heterostructures. Science 2016, 353, aac9439.
[39]
Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[40]
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[41]
Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768-771.
[42]
Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465-471.
[43]
Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335-3345.
[44]
Wang, H. T.; Wang, Q. X.; Cheng, Y. C.; Li, K.; Yao, Y. B.; Zhang, Q.; Dong, C. Z.; Wang, P.; Schwingenschlögl, U.; Yang, W. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 2012, 12, 141-144.
[45]
Li, H. L.; Wu, X. P.; Liu, H. J.; Zheng, B. Y.; Zhang, Q. L.; Zhu, X. L.; Wei, Z.; Zhuang, X. J.; Zhou, H.; Tang, W. X. et al. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano 2017, 11, 961-967.
[46]
Tsetseris, L.; Wang, B.; Pantelides, S. T. Substitutional doping of graphene: The role of carbon divacancies. Phys. Rev. B 2014, 89, 035411.
[47]
Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; Mceuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562-566.
[48]
Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257-261.
[49]
Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[50]
Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature 2013, 499, 419-425.
[51]
Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[52]
Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[53]
Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[54]
Li, M.; Kang, J. S.; Nguyen, H. D.; Wu, H.; Aoki, T.; Hu, Y. J. Anisotropic thermal boundary resistance across 2D black phosphorus: Experiment and atomistic modeling of interfacial energy transport. Adv. Mater. 2019, 31, 1901021.
[55]
Kang, J. S.; Ke, M.; Hu, Y. J. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 2017, 17, 1431-1438.
[56]
Morita, A. Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227-242.
[57]
Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.
[58]
Li, M.; Kang, J. S.; Hu, Y. J. Anisotropic thermal conductivity measurement using a new asymmetric-beam time-domain thermoreflectance (AB-TDTR) method. Rev. Sci. Instrum. 2018, 89, 084901.
[59]
Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753-755.
[60]
Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366-2369.
[61]
Zhao, S. J.; Kang, W.; Xue, J. M. The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2014, 2, 19046-19052.
[62]
Li, Q. F.; Duan, C. G.; Wan, X. G.; Kuo, J. L. Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 2015, 119, 8662-8670.
[63]
Jung, S. C.; Han, Y. K. Thermodynamic and kinetic origins of lithiation-induced amorphous-to-crystalline phase transition of phosphorus. J. Phys. Chem. C 2015, 119, 12130-12137.
[64]
Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 1982, 86, 203-211.
[65]
Montgomery, H. C. Method for measuring electrical resistivity of anisotropic materials. J. Appl. Phys. 1971, 42, 2971-2975.
[66]
Akahama, Y.; Endo, S.; Narita, S. Electrical properties of single-crystal black phosphorus under pressure. Phys. B+C 1986, 139-140, 397-400.
[67]
Akahama, Y.; Endo, S.; Narita, S. I. Electrical properties of black phosphorus single crystals. J. Phys Soc. Jpn. 1983, 52, 2148-2155.
[68]
Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294-299.
[69]
Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777-6784.
[70]
Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart & Winston: New York, 1976.
[71]
Nguyen, H. D.; Kang, J. S.; Li, M.; Hu, Y. J. High-performance field emission based on nanostructured tin selenide for nanoscale vacuum transistors. Nanoscale 2019, 11, 3129-3137.
[72]
Brovman, Y. M.; Small, J. P.; Hu, Y. J.; Fang, Y.; Lieber, C. M.; Kim, P. Electric field effect thermoelectric transport in individual silicon and germanium / silicon nanowires. J. Appl. Phys. 2016, 119, 234304.
[73]
Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D. S.; Cui, Y. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 7584-7587.
[74]
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.
[75]
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901.
[76]
Fan, H.; Wu, H.; Lindsay, L.; Hu, Y. J. Ab initio investigation of single-layer high thermal conductivity boron compounds. Phys. Rev. B 2019, 100, 085420.
[77]
Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. J. Experimental observation of high thermal conductivity in boron arsenide. Science 2018, 361, 575-578.
[78]
Kang, J. S.; Wu, H.; Hu, Y. J. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 2017, 17, 7507-7514.
[79]
Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. J. Basic physical properties of cubic boron arsenide. Appl. Phys. Lett. 2019, 115, 122103.
[80]
Faghaninia, A.; Ager III, J. W.; Lo, C. S. Ab initio electronic transport model with explicit solution to the linearized boltzmann transport equation. Phys. Rev. B 2015, 91, 235123.
[81]
Faghaninia, A.; Ager III, J. W.; Lo, C. S. Ab Initio Model for Mobility and Seebeck Coefficient Using Boltzmann Transport (AMoBT) Equation [Online]. NanoHUB. https://nanohub.org/resources/amobt (accessed Nov 27, 2019).
[82]
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Clarendon Press: Oxford, 1960.
[83]
Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2019, 1, 16061.
[84]
Maennig, B.; Pfeiffer, M.; Nollau, A.; Zhou, X.; Leo, K.; Simon, P. Controlled P-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys. Rev. B 2001, 64, 195208.
[85]
Ryu, Y. R.; Lee, T. S.; White, H. W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett. 2003, 83, 87-89.
[86]
Snaith, H. J.; Grätzel, M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells. Appl. Phys. Lett. 2006, 89, 262114.
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 November 2019
Revised: 29 December 2019
Accepted: 31 December 2019
Published: 11 March 2020
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Y. H. acknowledges support from a CAREER award from the National Science Foundation under grant DMR-1753393, an Alfred P. Sloan Research Fellowship under grant FG-2019-11788, a Young Investigator Award from the US Air Force Office of Scientific Research under grant FA9550-17-1-0149, a Doctoral New Investigator Award from the American Chemical Society Petroleum Research Fund under grant 58206-DNI5, as well as from the UCLA Sustainable LA Grand Challenge and the Anthony and Jeanne Pritzker Family Foundation. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

Return