Journal Home > Volume 13 , Issue 2

Developing nanomaterial-based enzyme mimics for DNA cleavage is an interesting challenge and it has many potential applications. Single-layered graphene oxide (GO) is an excellent platform for DNA adsorption. In addition, GO has been employed for photosensitized generation of reactive oxygen species (ROS). Herein, we demonstrate that GO sheets could cleave DNA as a nuclease mimicking nanozyme in the presence of UV or blue light. For various DNA sequences and lengths, well-defined product bands were observed along with photobleaching of the fluorophore label on the DNA. Different from previously reported GO cleavage of DNA, our method did not require metal ions such as Cu2+. Fluorescence spectroscopy suggested a high adsorption affinity between GO and DNA. For comparison, although zero-dimensional fluorescent carbon dots (C-dots) had higher photosensitivity in terms of producing ROS, their cleavage activity was much lower and only smeared cleavage products were observed, indicating that the ROS acted on the DNA in solution. Based on the results, GO behaved like a classic heterogeneous catalyst following substrate adsorption, reaction, and product desorption steps. This simple strategy may help in the design of new nanozymes by introducing light.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage

Show Author's information Jinyi Zhang1Shihong Wu2Lingzi Ma1Peng Wu2( )Juewen Liu1( )
Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada
State Key Laboratory of Hydraulics and Mountain River Engineering, Analytical & Testing Center, Sichuan University, Chengdu 610064, China

Abstract

Developing nanomaterial-based enzyme mimics for DNA cleavage is an interesting challenge and it has many potential applications. Single-layered graphene oxide (GO) is an excellent platform for DNA adsorption. In addition, GO has been employed for photosensitized generation of reactive oxygen species (ROS). Herein, we demonstrate that GO sheets could cleave DNA as a nuclease mimicking nanozyme in the presence of UV or blue light. For various DNA sequences and lengths, well-defined product bands were observed along with photobleaching of the fluorophore label on the DNA. Different from previously reported GO cleavage of DNA, our method did not require metal ions such as Cu2+. Fluorescence spectroscopy suggested a high adsorption affinity between GO and DNA. For comparison, although zero-dimensional fluorescent carbon dots (C-dots) had higher photosensitivity in terms of producing ROS, their cleavage activity was much lower and only smeared cleavage products were observed, indicating that the ROS acted on the DNA in solution. Based on the results, GO behaved like a classic heterogeneous catalyst following substrate adsorption, reaction, and product desorption steps. This simple strategy may help in the design of new nanozymes by introducing light.

Keywords: graphene oxide, photocatalysis, nuclease mimicking nanozyme, DNA cleavage

References(51)

[1]
Loenen, W. A. M.; Dryden, D. T. F.; Raleigh, E. A.; Wilson, G. G.; Murray, N. E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res. 2013, 42, 3-19.
[2]
Lin, Y. H.; Xu, C.; Ren, J. S.; Qu, X. G. Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew. Chem., Int. Ed. 2012, 51, 12579-12583.
[3]
Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.
[4]
Kameshima, W.; Ishizuka, T.; Minoshima, M.; Yamamoto, M.; Sugiyama, H.; Xu, Y.; Komiyama, M. Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew. Chem., Int. Ed. 2013, 52, 13681-13684.
[5]
Moser, H. E.; Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 1987, 238, 645-650.
[6]
Chen, C. H.; Sigman, D. S. Nuclease activity of 1,10-phenanthroline-copper: Sequence-specific targeting. Proc. Natl. Acad. Sci. USA 1986, 83, 7147-7151.
[7]
François, J. C.; Saison-Behmoaras, T.; Barbier, C.; Chassignol, M.; Thuong, N. T.; Hélène, C. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc. Natl. Acad. Sci. USA 1989, 86, 9702-9706.
[8]
Carmi, N.; Balkhi, S. R.; Breaker, R. R. Cleaving DNA with DNA. Proc. Natl. Acad. Sci. USA 1998, 95, 2233-2237.
[9]
Aiba, Y.; Sumaoka, J.; Komiyama, M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem. Soc. Rev. 2011, 40, 5657-5668.
[10]
Kitamura, Y.; Komiyama, M. Preferential hydrolysis of gap and bulge sites in DNA by Ce(IV)/EDTA complex. Nucleic Acids Res. 2002, 30, e102.
[11]
Chen, W.; Kitamura, Y.; Zhou, J. M.; Sumaoka, J.; Komiyama, M. Site-selective DNA hydrolysis by combining Ce(IV)/EDTA with monophosphate-bearing oligonucleotides and enzymatic ligation of the scission fragments. J. Am. Chem. Soc. 2004, 126, 10285-10291.
[12]
Gu, H. Z.; Furukawa, K.; Weinberg, Z.; Berenson, D. F.; Breaker, R. R. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 2013, 135, 9121-9129.
[13]
Kim, Y. G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156-1160.
[14]
Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636-646.
[15]
Porteus, M. H.; Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 2005, 23, 967-973.
[16]
Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071.
[17]
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[18]
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004-1076.
[19]
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.
[20]
Sun, M. Z.; Xu, L. G.; Qu, A. H.; Zhao, P.; Hao, T. T.; Ma, W.; Hao, C. L.; Wen, X. D.; Colombari, F. M.; de Moura, A. F. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018, 10, 821-830.
[21]
Xu, F.; Lu, Q. W.; Huang, P. J. J.; Liu, J. W. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun. 2019, 55, 13215-13218.
[22]
Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 2009, 48, 4785-4787.
[23]
He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453-459.
[24]
Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282-1290.
[25]
Liu, B. W.; Sun, Z. Y.; Zhang, X.; Liu, J. W. Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 2013, 85, 7987-7993.
[26]
Ren, H. L.; Wang, C.; Zhang, J. L.; Zhou, X. J.; Xu, D. F.; Zheng, J.; Guo, S. W.; Zhang, J. Y. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 2010, 4, 7169-7174.
[27]
Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 2016, 95, 1-10.
[28]
Xie, X. Z.; Mao, C. Y.; Liu, X. M.; Zhang, Y. Z.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Chu, P. K.; Wu, S. L. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl. Mater. Interfaces 2017, 9, 26417-26428.
[29]
Li, C. B.; Xu, Q.; Xu, S. X.; Zhang, X. F.; Hou, X. D.; Wu, P. Synergy of adsorption and photosensitization of graphene oxide for improved removal of organic pollutants. RSC Adv. 2017, 7, 16204-16209.
[30]
Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 2015, 347, 1260901.
[31]
Tan, L. H.; Xing, H.; Lu, Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 1881-1890.
[32]
Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019, 119, 6459-6506.
[33]
Li, J.; Mo, L. T.; Lu, C. H.; Fu, T.; Yang, H. H.; Tan, W. H. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 2016, 45, 1410-1431.
[34]
Liu, B. W.; Liu, J. W. Interface-driven hybrid materials based on DNA-functionalized gold nanoparticles. Matter 2019, 1, 825-847.
[35]
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.
[36]
Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808-40814.
[37]
Boyce, R. P.; Howard-Flanders, P. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc. Natl. Acad. Sci. USA 1964, 51, 293-300.
[38]
Bilski, P.; Reszka, K.; Bilska, M.; Chignell, C. F. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. J. Am. Chem. Soc. 1996, 118, 1330-1338.
[39]
Long, R.; Huang, H.; Li, Y. P.; Song, L.; Xiong, Y. J. Palladium-based nanomaterials: A platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv. Mater. 2015, 27, 7025-7042.
[40]
Wang, H.; Jiang, S. L.; Chen, S. C.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 2016, 28, 6940-6945.
[41]
Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.
[42]
Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano 2019, 13, 14152-14161.
[43]
Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015-1024.
[44]
Li, X.; Peng, Y. H.; Ren, J. S.; Qu, X. G. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc. Natl. Acad. Sci. USA 2006, 103, 19658-19663.
[45]
Peng, Y. H.; Wang, X. H.; Xiao, Y.; Feng, L. Y.; Zhao, C.; Ren, J. S.; Qu, X. G. i-motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 13813-13818.
[46]
Chen, X.; Zhou, X. J.; Han, T.; Wu, J. Y.; Zhang, J. Y.; Guo, S. W. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano 2013, 7, 531-537.
[47]
Liu, B. W.; Salgado, S.; Maheshwari, V.; Liu, J. W. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41-49.
[48]
Huang, P. J. J.; Kempaiah, R.; Liu, J. W. Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J. Mater. Chem. 2011, 21, 8991-8993.
[49]
Lu, C.; Liu, Y. B.; Ying, Y. B.; Liu, J. W. Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 2017, 33, 630-637.
[50]
Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214-3220.
[51]
Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
File
12274_2020_2629_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 November 2019
Revised: 19 December 2019
Accepted: 27 December 2019
Published: 10 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Funding for this work was from the Natural Sciences and Engineering Research Council of Canada (NSERC), and the National Natural Science Foundation of China (No. U19A2005).

Return