Journal Home > Volume 13 , Issue 2

The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode. However, the uncontrollable dendrites growth and serious side reactions severely limit its commercial application. Herein, an artificial LiF-rich solid electrolyte interphase (SEI) is constructed at molecular-level using one-step photopolymerization of hexafluorobutyl acrylate based solution, where the LiF is in situ generated during photopolymerization process (denoted as PHALF). The LiF-rich layer comprised flexible polymer matrix and inorganic LiF filler not only ensures intimate contact with Li anode and adapts volume fluctuations during cycling but also regulates Li deposition behavior, enabling it to suppress the dendrite growth and block side reactions between the electrolyte and Li metal. Accordingly, the PHALF-Li anode presents superior stable cycling performance over 500 h at 1 mA·cm-2 for 1 mA·h·cm-2 without dendrites growth in carbonate electrolyte. The work provides a novel approach to design and build in situ artificial SEI layer for high-safety and stable Li metal anodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes

Show Author's information Shan-Min Xu1,2,§Hui Duan2,3,§Ji-Lei Shi2,3Tong-Tong Zuo2,3Xin-Cheng Hu2,3Shuang-Yan Lang2,3Min Yan2Jia-Yan Liang2,3Yu-Guo Yang1Qing-Hua Kong1( )Xing Zhang2,3( )Yu-Guo Guo2,3( )
School of Science, Beijing Jiaotong University, Beijing 100044, China
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences and Beijing National Laboratory for Molecular Sciences (BNLMs), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Shan-Min Xu and Hui Duan contributed equally to this work.

Abstract

The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode. However, the uncontrollable dendrites growth and serious side reactions severely limit its commercial application. Herein, an artificial LiF-rich solid electrolyte interphase (SEI) is constructed at molecular-level using one-step photopolymerization of hexafluorobutyl acrylate based solution, where the LiF is in situ generated during photopolymerization process (denoted as PHALF). The LiF-rich layer comprised flexible polymer matrix and inorganic LiF filler not only ensures intimate contact with Li anode and adapts volume fluctuations during cycling but also regulates Li deposition behavior, enabling it to suppress the dendrite growth and block side reactions between the electrolyte and Li metal. Accordingly, the PHALF-Li anode presents superior stable cycling performance over 500 h at 1 mA·cm-2 for 1 mA·h·cm-2 without dendrites growth in carbonate electrolyte. The work provides a novel approach to design and build in situ artificial SEI layer for high-safety and stable Li metal anodes.

Keywords: solid electrolyte interphase, in situ, lithium metal batteries, artificial, LiF

References(57)

[1]
Xue, P.; Liu, S. R.; Shi, X. L.; Sun, C.; Lai, C.; Zhou, Y.; Sui, D.; Chen, Y. S.; Liang, J. J. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 2018, 30, e1804165.
[2]
Peng, Z.; Ren, F. H.; Yang, S. S.; Wang, M. Q.; Sun, J.; Wang, D. Y.; Xu, W.; Zhang, J. G. A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy 2019, 59, 110-119.
[3]
Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.
[4]
Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331-336.
[5]
Yan, M.; Wang, W. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Interfacial design for lithium-sulfur batteries: From liquid to solid. EnergyChem 2019, 1, 100002.
[6]
Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.
[7]
Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.
[8]
Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.
[9]
Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224-2229.
[10]
Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.
[11]
Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.
[12]
Li, L. Y.; Chen, C. G.; Yu, A. S. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Sci. China Chem. 2017, 60, 1402-1412.
[13]
Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.
[14]
Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428-3436.
[15]
Li, N. W.; Yin, Y. X.; Li, J. Y.; Zhang, C. H.; Guo, Y. G. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Adv. Sci. 2017, 4, 1600400.
[16]
Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 2018, 30, e1804461.
[17]
Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes. Adv. Mater. 2019, 31, 1806470.
[18]
Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.
[19]
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
[20]
Huang, G.; Han, J. H.; Zhang, F.; Wang, Z. Q.; Kashani, H.; Watanabe, K.; Chen, M. W. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes. Adv. Mater. 2019, 31, 1805334.
[21]
Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.
[22]
Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
[23]
Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
[24]
Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.
[25]
Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094-1099.
[26]
Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-9388.
[27]
Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 2018, 140, 82-85.
[28]
Duan, H.; Fan, M.; Chen, W. P.; Li, J. Y.; Wang, P. F.; Wang, W. P.; Shi, J. L.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 2019, 31, e1807789.
[29]
Li, Y.; Wang, X. G.; Dong, S. M.; Chen, X.; Cui, G. L. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1600751.
[30]
Liu, F.; Xiao, Q. F.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. F. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701744.
[31]
Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815-4820.
[32]
Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.
[33]
Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, W. J.; Li, H.; Cui, G. L.; Chen, L. Q. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem. Mater. 2017, 29, 4682-4689.
[34]
Hu, P.; Duan, Y. L.; Hu, D. P.; Qin, B. S.; Zhang, J. J.; Wang, Q. F.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 4720-4727.
[35]
Sun, Y. P.; Zhao, Y.; Wang, J. W.; Liang, J. N.; Wang, C. H.; Sun, Q.; Lin, X. T.; Adair, K. R.; Luo, J.; Wang, D. W. et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 2019, 31, 1806541.
[36]
Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.
[37]
Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256-4265.
[38]
Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 2018, 30, 1804684.
[39]
Nova, A.; Mas-Ballesté, R.; Lledós, A. Breaking C-F bonds via nucleophilic attack of coordinated ligands: Transformations from C-F to C-X bonds (X= H, N, O, S). Organometallics 2012, 31, 1245-1256.
[40]
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301-5305.
[41]
Wang, H. S.; Lin, D. C.; Xie, J.; Liu, Y. Y.; Chen, H.; Li, Y. B.; Xu, J. W.; Zhou, G. M.; Zhang, Z. W.; Pei, A. et al. An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 2019, 9, 1802720.
[42]
Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853-1858.
[43]
Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384-389.
[44]
Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888-2895.
[45]
Gu, F.; Xu, G. Q.; Ang, S. G. Fabrication of CuTAPc polymer nanowires and nanotubes by electropolymerization. Nanotechnology 2008, 19, 145606.
[46]
Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.
[47]
Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218-19253.
[48]
Karaman, M.; Yenice, E. Plasma enhanced chemical vapor deposition of poly(2, 2, 3, 4, 4, 4-hexafluorobutyl acrylate) thin films. Chem. Vap. Deposition 2015, 21, 188-195.
[49]
Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 2016, 8, 426-434.
[50]
Devaux, D.; Harry, K. J.; Parkinson, D. Y.; Yuan, R.; Hallinan, D. T.; MacDowell, A. A.; Balsara, N. P. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 2015, 162, A1301-A1309.
[51]
Ding, F.; Xu, W.; Chen, X. L.; Zhang, J.; Engelhard, M. H.; Zhang, Y. H.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X. J. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 2013, 160, A1894-A1901.
[52]
Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.
[53]
Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.
[54]
Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505-1509.
[55]
Zhang, X.; Zhang, Q. M.; Wang, X. G.; Wang, C. Y.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. An extremely simple method for protecting lithium anodes in Li-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 12814-12818.
[56]
Bobnar, J.; Lozinšek, M.; Kapun, G.; Njel, C.; Dedryvère, R.; Genorio, B.; Dominko, R. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Sci. Rep. 2018, 8, 5819.
[57]
Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater. 2015, 27, 2189-2194.
File
12274_2020_2625_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 September 2019
Revised: 03 December 2019
Accepted: 26 December 2019
Published: 17 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Basic Science Center Project of National Natural Science Foundation of China (No. 51788104), the National Natural Science Foundation of China (Nos. 21773264, 21805062, 21703257, 21603011), the National Key R&D Program of China (Nos. 2016YFA0202500 and 2018YFB0104300), Beijing Natural Science Foundation (No. L172023) and the "Transformational Technologies for Clean Energy and Demonstration" , Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA 21070300), the Youth Innovation Promotion Association CAS (No. 2019033), the Fundamental Research Funds for the Central Universities (No. 2018JBM067). We thank Dr. Z. J. Z., Dr. X.Y. Z. and Dr. Y. S. at the Center for Analysis and Testing, ICCAS for their help for the XPS and XRD analysis.

Return