Journal Home > Volume 13 , Issue 2

To achieve stable positive electrode for promoting the overall electrochemical performance of Al batteries (ABs), here novel cobalt boride (CoB) nanoclusters are synthesized to construct composite electrodes with few-layer graphene (FLG). Due to the presence of amorphous channels in the employed CoB nanoclusters, the ABs with FLG/CoB composite positive electrodes exhibit high rate capability and both mechanical and electrochemical stability in the ABs. With assistance of in situ scanning electron microscopy (SEM), the observation results suggest that the positive electrode of CoB nanoclusters holds almost ignorable volume variation upon electrochemical processes, which substantially alleviates the massive electrode expansion induced by the anion intercalation in the composite positive electrode. Interestingly, the composite positive electrodes provide stable reversible energy storage capability within a broadened temperature range (-30-60 °C), promising a novel strategy to design advanced ABs positive electrodes with enhanced overall energy storage performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stable wide-temperature and low volume expansion Al batteries: Integrating few-layer graphene with multifunctional cobalt boride nanocluster as positive electrode

Show Author's information Li-Li Chen1,2,3,§Na Li1,2,3,§Huifeng Shi5Yuefei Zhang5Wei-Li Song1,2( )Shuqiang Jiao1,4( )Haosen Chen1,2Daining Fang1,2,6
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China

§ Li-Li Chen and Na Li contributed equally to this work.

Abstract

To achieve stable positive electrode for promoting the overall electrochemical performance of Al batteries (ABs), here novel cobalt boride (CoB) nanoclusters are synthesized to construct composite electrodes with few-layer graphene (FLG). Due to the presence of amorphous channels in the employed CoB nanoclusters, the ABs with FLG/CoB composite positive electrodes exhibit high rate capability and both mechanical and electrochemical stability in the ABs. With assistance of in situ scanning electron microscopy (SEM), the observation results suggest that the positive electrode of CoB nanoclusters holds almost ignorable volume variation upon electrochemical processes, which substantially alleviates the massive electrode expansion induced by the anion intercalation in the composite positive electrode. Interestingly, the composite positive electrodes provide stable reversible energy storage capability within a broadened temperature range (-30-60 °C), promising a novel strategy to design advanced ABs positive electrodes with enhanced overall energy storage performance.

Keywords: ionic liquid, positive electrode, Al batteries, cobalt boride nanoclusters, broad temperature

References(48)

[1]
Tu, J. G.; Wang, J. X.; Li, S. J.; Song, W. L.; Wang, M. Y.; Zhu, H. M.; Jiao, S. Q. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale 2019, 11, 12537-12546.
[2]
Tu, J. G.; Hu, L. W.; Wang, W.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J. Electrochem. Soc. 2013, 160, A1916-A1921.
[3]
Kuzmina, O.; Slattery, J. M.; Hu, M. L.; Song, Q. S.; Jiao, S. Q.; Haarberg, G. M.; Xu, Q.; Wang, D. H.; Madden, P.; Cooper, D. et al. Improvements of energy conversion and storage: General discussion. Faraday Discuss. 2016, 190, 291-306.
[4]
Chen, G.; Chen, Y. Q.; Guo, Q. J.; Wang, H.; Li, B. Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries. Faraday Discuss. 2016, 190, 97-108.
[5]
Guo, Q. J.; Wang, Q.; Chen, G.; Xu, H. J.; Wu, J. Y.; Li, B. Molten salt synthesis of transition metal oxides doped Li4Ti5O12 as anode material of Li-ion battery. ECS Trans. 2016, 72, 11-23.
[6]
Guo, Q. J.; Li, S. Y.; Wang, H.; Gao, Y.; Li, B. Molten salt synthesis of nano-sized Li4Ti5O12 doped with Fe2O3 for use as anode material in the lithium-ion battery. RSC Adv. 2014, 4, 60327-60333.
[7]
Liu, B. X.; Li, B.; Guan, S. Y. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries. Electrochem. Solid-State Lett. 2012, 15, A77-A79.
[8]
Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324-328.
[9]
Stadie, N. P.; Wang, S. T.; Kravchyk, K. V.; Kovalenko, M. V. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 2017, 11, 1911-1919.
[10]
Yu, X. Z.; Wang, B.; Gong, D. C.; Xu, Z.; Lu, B. A. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv. Mater. 2016, 29, 1604118.
[11]
Wang, D. Y.; Wei, C. Y.; Lin, M. C.; Pan, C. J.; Chou, H. L.; Chen, H. A.; Gong, M.; Wu, Y. P.; Yuan, C. Z.; Angell, M. et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun. 2017, 8, 14283.
[12]
Rani, J. V.; Kanakaiah, V.; Dadmal, T.; Rao, M. S.; Bhavanarushi, S. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J. Electrochem. Soc. 2013, 160, A1781-A1784.
[13]
Chen, H.; Guo, F.; Liu, Y. J.; Huang, T. Q.; Zheng, B. N.; Ananth, N.; Xu, Z.; Gao, W. W.; Gao, C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958.
[14]
Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 2015, 51, 11892-11895.
[15]
Chen, H.; Xu, H. Y.; Wang, S. Y.; Huang, T. Q.; Xi, J. B.; Cai, S. Y.; Guo, F.; Xu, Z.; Gao, W. W.; Gao, C. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 2017, 3, eaao7233.
[16]
Wang, S.; Jiao, S. Q.; Song, W. L.; Chen, H. S.; Tu, J. G.; Tian, D. H.; Jiao, H. D.; Fu, C. P.; Fang, D. N. A novel dual-graphite aluminum-ion battery. Energy Storage Mater. 2018, 12, 119-127.
[17]
Geng, L. X.; Lv, G. C.; Xing, X. B.; Guo, J. C. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 2015, 27, 4926-4929.
[18]
Jayaprakash, N.; Das, S. K.; Archer, L. A. The rechargeable aluminum-ion battery. Chem. Commun. 2011, 47, 12610-12612.
[19]
Wang, W.; Jiang, B.; Xiong, W. Y.; Sun, H.; Lin, Z. S.; Hu, L. W.; Tu, J. G.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 2013, 3, 3383.
[20]
Tu, J. G.; Lei, H. P.; Yu, Z. J.; Jiao, S. Q. Ordered WO3-x nanorods: Facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem. Commun. 2018, 54, 1343-1346.
[21]
Geng, L. X.; Scheifers, J. P.; Fu, C. Y.; Zhang, J.; Fokwa, B. P. T.; Guo, J. C. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS Appl. Mater. Interfaces 2017, 9, 21251-21257.
[22]
Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.
[23]
VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135-11144.
[24]
Liu, S.; Pan, G. L.; Li, G. R.; Gao, X. P. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J. Mater. Chem. A 2015, 3, 959-962.
[25]
Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2015, 7, 24385-24389.
[26]
Yu, Z. J.; Kang, Z. P.; Hu, Z. Q.; Lu, J. H.; Zhou, Z. G.; Jiao, S. Q. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem. Commun. 2016, 52, 10427-10430.
[27]
Wang, S.; Jiao, S. Q.; Wang, J. X.; Chen, H. S.; Tian, D. H.; Lei, H. P.; Fang, D. N. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 2017, 11, 469-477.
[28]
Walter, M.; Kravchyk, K. V.; Böfer, C.; Widmer, R.; Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 2018, 30, 1705644.
[29]
Angell, M.; Pan, C. J.; Rong, Y. M.; Yuan, C. Z.; Lin, M. C.; Hwang, B. J.; Dai, H. J. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. USA 2017, 114, 834-839.
[30]
Chen, H.; Guo, F.; Liu, Y. J.; Huang, T. Q.; Zheng, B. N.; Ananth, N.; Xu, Z.; Gao, W. W.; Gao, C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958.
[31]
Pan, C. J.; Yuan, C. Z.; Zhu, G. Z.; Zhang, Q.; Huang, C. J.; Lin, M. C.; Angell, M.; Hwang, B. J.; Kaghazchi, P.; Dai, H. J. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 5670-5675.
[32]
Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 2016, 109, 276-281.
[33]
Song, W. L.; Fan, L. Z.; Cao, M. S.; Lu, M. M.; Wang, C. Y.; Wang, J.; Chen, T. T.; Li, Y.; Hou, Z. L.; Liu, J. et al. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J. Mater. Chem. C 2014, 2, 5057-5064.
[34]
Song, W. L.; Wang, J.; Fan, L. Z.; Li, Y.; Wang, C. Y.; Cao, M. S. Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfaces 2014, 6, 10516-10523.
[35]
Wang, P.; Chen, H. S.; Li, N.; Zhang, X. Y.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Mater. 2018, 13, 103-111.
[36]
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.
[37]
Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol 2009, 4, 25-29.
[38]
Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624-630.
[39]
Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.
[40]
Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. Q. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009, 3, 2199-2206.
[41]
Choi, B. G.; Hong, J.; Hong, W. H.; Hammond, P. T.; Park, H. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 2011, 5, 7205-7213.
[42]
Song, W. L.; Song, K.; Fan, L. Z. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4257-4264.
[43]
Liu, Z. M.; Wang, J.; Ding, H. B.; Chen, S. H.; Yu, X. Z.; Lu, B. A. Carbon nanoscrolls for aluminum battery. ACS Nano 2018, 12, 8456-8466.
[44]
Fan, L. Z.; Chi, S. S.; Wang, L. N.; Song, W. L.; He, M.; Gu, L. Synthesis of TiOx nanotubular arrays with oxygen defects as high-performance anodes for lithium-ion batteries. ChemElectroChem 2015, 2, 421-426.
[45]
Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1155-1160.
[46]
Fang, H. T.; Liu, M.; Wang, D. W.; Sun, T.; Guan, D. S.; Li, F.; Zhou, J. G.; Sham, T. K.; Cheng, H. M. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 2009, 20, 225701.
[47]
Sides, C. R.; Martin, C. R. Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv. Mater. 2005, 17, 125-128.
[48]
Huang, C. K.; Sakamoto, J. S.; Wolfenstine, J.; Surampudi, S. The limits of low-temperature performance of Li-ion cells. J. Electrochem. Soc. 2000, 147, 2893-2896.
File
12274_2020_2624_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2019
Revised: 16 November 2019
Accepted: 26 December 2019
Published: 21 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Financial support from the National Key R&D Program of China (No. 2018YFB0104400), the National Natural Science Foundation of China (Nos. 51725401, 51874019 and 11672341) and the Fundamental Research Funds for the Central Universities (No. FRFTP-17-002C2) is gratefully acknowledged.

Return