Journal Home > Volume 13 , Issue 2

The mounting threat of antibiotic-resistant bacterial infections has made it imperative to develop innovative antibacterial strategies. Here we propose a novel antibacterial nanoplatform of silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes constructed via a N-[3-(trimethoxysilyl)propyl]ethylene diamine (TSD)-mediated method (SWCNTs@mSiO2-TSD@Ag). In this system, the outer mesoporous silica shells are able to improve the dispersibility of SWCNTs, which will increase their contact area with bacteria cell walls. Meanwhile, the large number of mesopores in silica layers act as microreactors for in situ synthesis of Ag NPs with controlled small size and uniform distribution, which induces an enhanced antibacterial activity. Compared with TSD modified mesoporous silica coated single-walled carbon nanotubes (SWCNTs@mSiO2-TSD) and commercial Ag NPs, this combination nanosystem of SWCNTs@mSiO2-TSD@Ag exhibits much stronger antibacterial performance against multi-drug-resistant bacteria Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro through damaging the bacterial cell membranes and a fast release of silver ions. Furthermore, the in vivo rat skin infection model verifies that SWCNTs@mSiO2-TSD@Ag have remarkably improved abilities of bacterial clearance, wound healing promoting as well as outstanding biocompatibility. Therefore, this novel nanoplatform indicates promising potentials as a safe and powerful tool for the treatment of clinical drug-resistant infections.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria

Show Author's information Yu Zhu§Jia Xu§Yanmao WangCang ChenHongchen GuYimin Chai( )Yao Wang( )
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

§ Yu Zhu and Jia Xu contributed equally to this work.

Abstract

The mounting threat of antibiotic-resistant bacterial infections has made it imperative to develop innovative antibacterial strategies. Here we propose a novel antibacterial nanoplatform of silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes constructed via a N-[3-(trimethoxysilyl)propyl]ethylene diamine (TSD)-mediated method (SWCNTs@mSiO2-TSD@Ag). In this system, the outer mesoporous silica shells are able to improve the dispersibility of SWCNTs, which will increase their contact area with bacteria cell walls. Meanwhile, the large number of mesopores in silica layers act as microreactors for in situ synthesis of Ag NPs with controlled small size and uniform distribution, which induces an enhanced antibacterial activity. Compared with TSD modified mesoporous silica coated single-walled carbon nanotubes (SWCNTs@mSiO2-TSD) and commercial Ag NPs, this combination nanosystem of SWCNTs@mSiO2-TSD@Ag exhibits much stronger antibacterial performance against multi-drug-resistant bacteria Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro through damaging the bacterial cell membranes and a fast release of silver ions. Furthermore, the in vivo rat skin infection model verifies that SWCNTs@mSiO2-TSD@Ag have remarkably improved abilities of bacterial clearance, wound healing promoting as well as outstanding biocompatibility. Therefore, this novel nanoplatform indicates promising potentials as a safe and powerful tool for the treatment of clinical drug-resistant infections.

Keywords: silver nanoparticles, single-walled carbon nanotubes, drug-resistant bacteria, enhanced antibacterial activity, wound infections

References(49)

[1]
Worthington, R. J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177-184.
[2]
Zhou, J. L.; Xiang, H. X.; Zabihi, F.; Yu, S. L.; Sun, B.; Zhu, M. F. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res. 2019, 12, 1453-1460.
[3]
Bassetti, M.; Ginocchio, F.; Mikulska, M. New treatment options against gram-negative organisms. Crit. Care 2011, 15, 215.
[4]
Yang, X. L.; Zhang, L. M.; Jiang, X. Y. Aminosaccharide-gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus. Nano Res. 2018, 11, 6237-6243.
[5]
Conly, J.; Johnston, B. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 159-160.
[6]
Sun, P. P.; Zhang, Y.; Ran, X.; Liu, C. Y.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria. Nano Res. 2018, 11, 3762-3770.
[7]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974-3983.
[8]
Huang, F.; Gao, Y.; Zhang, Y. M.; Cheng, T. J.; Ou, H. L.; Yang, L. J.; Liu, J. J.; Shi, L. Q.; Liu, J. F. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl. Mater. Interfaces 2017, 9, 16880-16889.
[9]
Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271-4275.
[10]
Samberg, M. E.; Orndorff, P. E.; Monteiro-Riviere, N. A. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 2011, 5, 244-253.
[11]
Chen, J.; Wang, F. Y. K.; Liu, Q. M.; Du, J. Z. Antibacterial polymeric nanostructures for biomedical applications. Chem. Commun. 2014, 50, 14482-14493.
[12]
Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H. Z.; Tam, P. K. H.; Chiu, J. F.; Che, C. M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527-534.
[13]
Qing, Y. A.; Cheng, L.; Li, R. Y.; Liu, G. C.; Zhang, Y. B.; Tang, X. F.; Wang, J. C.; Liu, H.; Qin, Y. G. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine 2018, 13, 3311-3327.
[14]
Gliga, A. R.; Skoglund, S.; Wallinder, I. O.; Fadeel, B.; Karlsson, H. L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 11.
[15]
Dosunmu, E.; Chaudhari, A. A.; Singh, S. R.; Dennis, V. A.; Pillai, S. R. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: A potential mechanism for their antimicrobial effect. Int. J. Nanomedicine 2015, 10, 5025-5034.
[16]
Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966-6973.
[17]
Tian, Y.; Qi, J. J.; Zhang, W.; Cai, Q.; Jiang, X. Y. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 12038-12045.
[18]
Chen, H. Q.; Wang, B.; Gao, D.; Guan, M.; Zheng, L. N.; Ouyang, H.; Chai, Z. F.; Zhao, Y. L.; Feng, W. Y. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 2013, 9, 2735-2746.
[19]
Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon Nanomaterials for biological imaging and Nanomedicinal therapy. Chem. Rev. 2015, 115, 10816-10906.
[20]
Nie, C. X.; Cheng, C.; Peng, Z. H.; Ma, L.; He, C.; Xia, Y.; Zhao, C. S. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J. Mater. Chem. B 2016, 4, 2749-2756.
[21]
Wang, N.; Pandit, S.; Ye, L. L.; Edwards, M.; Mokkapati, V. R. S. S.; Murugesan, M.; Kuzmenko, V.; Zhao, C. H.; Westerlund, F.; Mijakovic, I. et al. Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon 2017, 111, 402-410.
[22]
Chaudhari, A. A.; Jasper, S. L.; Dosunmu, E.; Miller, M. E.; Arnold, R. D.; Singh, S. R.; Pillai, S. Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J. Nanobiotechnol. 2015, 13, 23.
[23]
Wang, Y.; Gu, H. C. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 2015, 27, 576-585.
[24]
Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862-3875.
[25]
Qasim, M.; Singh, B. R.; Naqvi, A. H.; Paik, P.; Das, D. Silver nanoparticles embedded mesoporous SiO2 nanosphere: An effective anticandidal agent against Candida albicans 077. Nanotechnology 2015, 26, 285102.
[26]
Wang, Y.; Song, H.; Yu, C. Z.; Gu, H. C. From helixes to mesostructures: Evolution of mesoporous silica shells on single-walled carbon nanotubes. Chem. Mat. 2016, 28, 936-942.
[27]
Liu, R.; Wang, X. D.; Ye, J.; Xue, X. M.; Zhang, F. R.; Zhang, H. C.; Hou, X. M.; Liu, X. L.; Zhang, Y. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect. Nanotechnology 2018, 29, 105704.
[28]
Wang, Y.; Ding, X. L.; Chen, Y.; Guo, M. Q.; Zhang, Y.; Guo, X. K.; Gu, H. C. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 2016, 101, 207-216.
[29]
Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707-716.
[30]
Kirchhoff, C.; Cypionka, H. Boosted membrane potential as Bioenergetic response to anoxia in Dinoroseobacter shibae. Front. Microbiol. 2017, 8, 695.
[31]
Novo, D.; Perlmutter, N. G.; Hunt, R. H.; Shapiro, H. M. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 1999, 35, 55-63.
[32]
Kugelberg, E.; Norström, T.; Petersen, T. K.; Duvold, T.; Andersson, D. I.; Hughes, D. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob. Agents Chemother. 2005, 49, 3435-3441.
[33]
Samy, R. P.; Gopalakrishnakone, P.; Houghton, P.; Ignacimuthu, S. Purification of antibacterial agents from Tragia involucrata—A popular tribal medicine for wound healing. J. Ethnopharmacol. 2006, 107, 99-106.
[34]
Zhu, Y.; Wang, Y. M.; Jia, Y. C.; Xu, J.; Chai, Y. M. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019, 27, 324-334.
[35]
Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 2009, 21, 1684-1689.
[36]
Song, J.; Kang, H.; Lee, C.; Hwang, S. H.; Jang, J. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl. Mater. Interfaces 2012, 4, 460-465.
[37]
Cui, G. J.; Sun, Z. B.; Li, H. Z.; Liu, X. N.; Liu, Y.; Tian, Y. X.; Yan, S. Q. Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles. J. Mater. Chem. A 2016, 4, 1771-1783.
[38]
Song, Z. L.; Ma, Y. J.; Xia, G. G.; Wang, Y.; Kapadia, W.; Sun, Z. Y.; Wu, W.; Gu, H. C.; Cui, W. G.; Huang, X. Y. In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded electrospun fibrous membranes. J. Mat. Chem. B 2017, 5, 7632-7643.
[39]
Shi, X. H.; Kong, Y.; Gao, H. J. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane. Acta Mech. Sin. 2008, 24, 161-169.
[40]
Reidy, B.; Haase, A.; Luch, A.; Dawson, K. A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295-2350.
[41]
Holt, K. B.; Bard, A. J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 2005, 44, 13214-13223.
[42]
Long, Y. M.; Hu, L. G.; Yan, X. T.; Zhao, X. C.; Zhou, Q. F.; Cai, Y.; Jiang, G. B. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int. J. Nanomedicine 2017, 12, 3193-3206.
[43]
Seong, M. J.; Lee, D. G. Silver Nanoparticles against Salmonella enterica serotype Typhimurium: Role of inner membrane dysfunction. Curr. Microbiol. 2017, 74, 661-670.
[44]
Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. S. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 2011, 45, 4422-4428.
[45]
Moran, G. J.; Krishnadasan, A.; Gorwitz, R. J.; Fosheim, G. E.; McDougal, L. K.; Carey, R. B.; Talan, D. A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666-674.
[46]
Edwards, R.; Harding, K. G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004, 17, 91-96.
[47]
Siddiqui, A. R.; Bernstein, J. M. Chronic wound infection: Facts and controversies. Clin. Dermatol. 2010, 28, 519-526.
[48]
Kingsley, A. The wound infection continuum and its application to clinical practice. Ostomy Wound Manage 2003, 49, 1-7.
[49]
Park, S. Y.; Lee, H. U.; Lee, Y. C.; Kim, G. H.; Park, E. C.; Han, S. H.; Lee, J. G.; Choi, S.; Heo, N. S.; Kim, D. L. et al. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Mater. Sci. Eng. C 2014, 42, 757-762.
File
12274_2020_2621_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2019
Revised: 17 December 2019
Accepted: 21 December 2019
Published: 08 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51802192, 81802156, and 81772338), the Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2017ZD05), Natural Science Foundation of Shanghai (No. 19ZR1474800), Shanghai Sailing Program (No. 18YF1410700), and Innovation Research Plan supported by Shanghai Municipal Education Commission (No. ZXWF082101). The authors would like to acknowledge the Instrumental Analysis Center of Shanghai Jiao Tong University for the characterization of materials, and Juanxi Gu of Shanghai Jiao Tong University for her graphic assistance.

Return