Journal Home > Volume 13 , Issue 2

Electrocatalytic water splitting (EWS) is a promising route to produce hydrogen in a sustainable and environment-benign manner. To realize the large-scale hydrogen production, it is paramount to develop desirable electrocatalysts with engineered structure, high catalytic activity, facile accessibility, low cost, and good durability. Of late, boride-based materials, especially transition-metal borides (TMBs), are emerging as promising candidates for the EWS process. However, so far, little attempt has been made to provide a comprehensive summary on these findings. Herein, this review provides the up-to-date status on upgrading the catalytic performance of TMB-based nanomaterials by regulating the internal and external characteristics. The conventional synthetic techniques are first presented for the preparation of TMB-based catalysts. Afterwards, the advanced strategies are summarized to enhance the catalytic performance of TMBs, including morphology control, component regulation, phase engineering, surface oxidation and hybridization. Then, the design principles of TMB-based electrocatalysts for high-performance EWS are outlined. Lastly, the current challenges and future directions in the development of TMB-based materials are proposed. This review article is expected to envisage insights into the TMBs-based water splitting and to provide strategies for design of the next-generation TMB-based electrocatalysts.


menu
Abstract
Full text
Outline
About this article

Boride-based electrocatalysts: Emerging candidates for water splitting

Show Author's information Zhijie Chen1Xiaoguang Duan2Wei Wei1Shaobin Wang2Zejie Zhang3Bing-Jie Ni1( )
Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Australia
State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China

Abstract

Electrocatalytic water splitting (EWS) is a promising route to produce hydrogen in a sustainable and environment-benign manner. To realize the large-scale hydrogen production, it is paramount to develop desirable electrocatalysts with engineered structure, high catalytic activity, facile accessibility, low cost, and good durability. Of late, boride-based materials, especially transition-metal borides (TMBs), are emerging as promising candidates for the EWS process. However, so far, little attempt has been made to provide a comprehensive summary on these findings. Herein, this review provides the up-to-date status on upgrading the catalytic performance of TMB-based nanomaterials by regulating the internal and external characteristics. The conventional synthetic techniques are first presented for the preparation of TMB-based catalysts. Afterwards, the advanced strategies are summarized to enhance the catalytic performance of TMBs, including morphology control, component regulation, phase engineering, surface oxidation and hybridization. Then, the design principles of TMB-based electrocatalysts for high-performance EWS are outlined. Lastly, the current challenges and future directions in the development of TMB-based materials are proposed. This review article is expected to envisage insights into the TMBs-based water splitting and to provide strategies for design of the next-generation TMB-based electrocatalysts.

Keywords: oxygen evolution reaction, water splitting, electrocatalysts, hydrogen evolution reaction, transition-metal borides

References(142)

[1]
Wang, Y. H.; Chen, L.; Yu, X. M.; Wang, Y. G.; Zheng, G. F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 2017, 7, 1601390.
[2]
Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971-15005.
[3]
Huang, X. L.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. M. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1604943.
[4]
Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.
[5]
Xin, W. L.; Jiang, W. J.; Lian, Y. J.; Li, H.; Hong, S.; Xu, S. L.; Yan, H.; Hu, J. S. NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting. Chem. Commun. 2019, 55, 3781-3784.
[6]
Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater., in press, .
[7]
Sun, H. N.; Xu, X. M.; Chen, G.; Zhou, Y. P.; Lin, H. J.; Chen, C. T.; Ran, R.; Zhou, W.; Shao, Z. P. Smart control of composition for double perovskite electrocatalysts toward enhanced oxygen evolution reaction. ChemSusChem 2019, 12, 5111-5116.
[8]
Lu, Q.; Yu, J.; Zou, X.; Liao, K.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.
[9]
Guo, M. C.; Zhou, L. X.; Li, Y.; Zheng, Q. J.; Xie, F. Y.; Lin, D. M. Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 13130-13141.
[10]
Guo, R. H.; Lai, X. X.; Huang, J. W.; Du, X. C.; Yan, Y. C.; Sun, Y. H.; Zou, G. F.; Xiong, J. Phosphate-based electrocatalysts for water splitting: Recent progress. ChemElectroChem 2018, 5, 3822-3834.
[11]
Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688-3707.
[12]
Wang, H. F.; Tang, C.; Li, B. Q.; Zhang, Q. A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 2018, 5, 521-534.
[13]
Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.
[14]
Pei, Y.; Cheng, Y.; Chen, J. Y.; Smith, W.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220-23243.
[15]
Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26-55.
[16]
Shi, Y. M.; Zhang, B. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Trans. 2017, 46, 16770-16773.
[17]
Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069-8097.
[18]
Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.
[19]
Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90-204.
[20]
Liu, Y. C.; Li, Y.; Kang, H. Y.; Jin, T.; Jiao, L. F. Design, synthesis, and energy-related applications of metal sulfides. Mater. Horiz. 2016, 3, 402-421.
[21]
Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178-4280.
[22]
Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748-7759.
[23]
Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.
[24]
Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371.
[25]
Xu, X. M.; Zhong, Y. J.; Shao, Z. P. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 2019, 1, 410-424.
[26]
Liu, Y.; Wang, W.; Xu, X. M.; Veder, J. P. M.; Shao, Z. P. Recent advances in anion-doped metal oxides for catalytic applications. J. Mater. Chem. A 2019, 7, 7280-7300.
[27]
Xu, X. M.; Wang, W.; Zhou, W.; Shao, Z. P. Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2018, 2, 1800071.
[28]
Zhu, Y. L.; Zhou, W.; Shao, Z. P. Perovskite/carbon composites: Applications in oxygen electrocatalysis. Small 2017, 13, 1603793.
[29]
Xie, W. F., Li, Z. H.; Shao, M. F., Wei, M. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Front. Chem. Sci. Eng. 2018, 12, 537-554.
[30]
Wang, Y. Y.; Yan, D. F.; El Hankari, S.; Zou, Y. Q.; Wang, S. Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. (Weinh) 2018, 5, 1800064.
[31]
Gottlieb, E.; Matyjaszewski, K.; Kowalewski, T. Polymer-based synthetic routes to carbon-based metal-free catalysts. Adv. Mater. 2018, 31, 1804626.
[32]
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[33]
Tackett, B. M.; Sheng, W. C.; Chen, J. G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 2017, 1, 253-263.
[34]
Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896-8909.
[35]
Gupta, S.; Patel, N., Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ. 2016, 192, 126-133.
[36]
Masa, J.; Andronescu, C.; Antoni, H.; Sinev, I.; Seisel, S.; Elumeeva, K.; Barwe, S.; Marti-Sanchez, S.; Arbiol, J.; Roldan Cuenya, B. et al. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem 2019, 6, 235-240.
[37]
Masa, J.; Piontek, S.; Wilde, P.; Antoni, H.; Eckhard, T.; Chen, Y. T.; Muhler, M.; Apfel, U. P.; Schuhmann, W. Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 2019, 9, 1900796.
[38]
Li, J. H.; Chen, H.; Liu, Y. P.; Gao, R. Q.; Zou, X. X. In situ structural evolution of a nickel boride catalyst: Synergistic geometric and electronic optimization for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5288-5294.
[39]
Yuan, W. Y.; Zhao, X. S.; Hao, W. J.; Li, J. X.; Wang, L. C., Ma, X. H.; Guo, Y. H. Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 764-770.
[40]
Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J. et al. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem., Int. Ed. 2017, 56, 6572-6577.
[41]
Li, P. P.; Zhao, R. B.; Chen, H. Y.; Wang, H. B.; Wei, P. P.; Huang, H.; Liu, Q.; Li, T. S.; Shi, X. F.; Zhang, Y. Y. et al. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 2019, 15, 1805103.
[42]
Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244-276.
[43]
Zhang, T. R.; Zhu, Y. S.; Lee, J. Y. Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. J. Mater. Chem. A 2018, 6, 8147-8158.
[44]
Dinh, K. N.; Liang, Q. H.; Du, C. F.; Zhao, J.; Tok, A. I. Y.; Mao, H.; Yan, Q. Y. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 2019, 25, 99-121.
[45]
Chattopadhyay, J.; Srivastava, R. Advanced Nanomaterials in Biomedical, Sensor and Energy Applications; Springer: Berlin, 2017.
[46]
Carenco, S.; Portehault, D.; Boissiere, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981-8065.
[47]
Jo, S.; Kwon, J. H.; Cho, K. Y.; Kim, D. H.; Eom, K. S. Enhanced activity and stability of Co-Ni-P-B catalyst for the hydrogen evolution reaction via predeposition of Co-Ni on a Cu substrate. Catal. Today, in press, .
[48]
Park, H.; Zhang, Y. M.; Lee, E.; Shankhari, P.; Fokwa, B. T. P. High-current-density HER electrocatalysts: Graphene-like boron layer and tungsten as key ingredients in metal diborides. ChemSusChem 2019, 12, 3726-3731.
[49]
Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627-8630.
[50]
Xu, X. S.; Deng, Y. X.; Gu, M. H.; Sun, B. T.; Liang, Z. Q.; Xue, Y. J.; Guo, Y. C.; Tian, J.; Cui, H. Z. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci. 2019, 470, 591-595.
[51]
Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl. Surf. Sci. 2019, 480, 689-696.
[52]
Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496-500.
[53]
Sun, Z. M.; Hao, S.; Ji, X. Q.; Zheng, X. J.; Xie, J. F.; Li, X. M.; Tang, B. Efficient alkaline hydrogen evolution electrocatalysis enabled by an amorphous Co-Mo-B film. Dalton Trans. 2018, 47, 7640-7643.
[54]
Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2018, 9, 1803369.
[55]
Sheng, M. Q.; Wu, Q.; Wang, Y.; Liao, F.; Zhou, Q. Y.; Hou, J. X.; Weng, W. P. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution. Electrochem. Commun. 2018, 93, 104-108.
[56]
Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 6282-6288.
[57]
Wang, Y.; Mayorga-Martinez, C. C.; Chia, X.; Sofer, Z.; Mohamad Latiff, N.; Pumera, M. Bipolar electrochemistry as a simple synthetic route toward nanoscale transition of Mo2B5 and W2B5 for enhanced hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 12148-12159.
[58]
Jothi, P. R.; Zhang, Y.; Yubuta, K.; Culver, D. B.; Conley, M.; Fokwa, B. P. T. Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution. ACS Appl. Energy Mater. 2019, 2, 176-181.
[59]
Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062-22069.
[60]
Cao, M.; Zhang, X. Y.; Qin, J. Q.; Liu, R. P. Enhancement of hydrogen evolution reaction performance of graphitic carbon nitride with incorporated nickel boride. ACS Sustainable Chem. Eng. 2018, 6, 16198-16204.
[61]
Wang, X. F.; Tai, G. A.; Wu, Z. H.; Hu, T. S.; Wang, R. Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 23471-23475.
[62]
Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y. M.; Fokwa, B. P. T. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 5575-5578.
[63]
Jothi, P. R.; Zhang, Y. M.; Scheifers, J. P.; Park, H.; Fokwa, B. P. T. Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustainable Energy Fuels 2017, 1, 1928-1934.
[64]
Alameda, L. T.; Holder, C. F.; Fenton, J. L.; Schaak, R. E. Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 2017, 29, 8953-8957.
[65]
Sitler, S. J.; Raja, K. S.; Charit, I. Metal-rich transition metal diborides as electrocatalysts for hydrogen evolution reactions in a wide range of pH. J. Electrochem. Soc. 2016, 163, H1069-H1075.
[66]
Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 2016, 19, 98-107.
[67]
Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 2015, 279, 620-625.
[68]
Müller, C. I.; Rauscher, T.; Schmidt, A.; Schubert, T.; Weißgärber, T.; Kieback, B.; Röntzsch, L. Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis. Int. J. Hydrogen Energy 2014, 39, 8926-8937.
[69]
Yuan, H. F.; Wang, S. M.; Gu, X. D.; Tang, B.; Li, J. P.; Wang, X. G. One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. J. Mater. Chem. A 2019, 7, 19554-19564.
[70]
Wang, S.; He, P.; Xie, Z. W.; Jia, L. P.; He, M. Q.; Zhang, X. Q.; Dong, F. Q.; Liu, H. H.; Zhang, Y.; Li, C. X. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction. Electrochim. Acta 2019, 296, 644-652.
[71]
Jiang, Y. Y.; Fang, Y. T.; Chen, C. X.; Ni, P. J.; Kong, B.; Song, Z. Q.; Lu, Y. Z.; Niu, L. Amorphous cobalt boride nanosheets directly grown on nickel foam: Controllable alternately dipping deposition for efficient oxygen evolution. ChemElectroChem 2019, 6, 3684-3689.
[72]
Wang, L. C.; Li, J. X.; Zhao, X. S.; Hao, W. J.; Ma, X. H.; Li, S. J.; Guo, Y. H. Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. Interfaces 2019, 6. 1801690.
[73]
Sun, J. K.; Zhang, W.; Wang, S. Y.; Ren, Y. B.; Liu, Q. Y.; Sun, Y. F.; Tang, L.; Guo, J. X.; Zhang, X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloys Compd. 2019, 776, 511-518.
[74]
Mann, D. K.; Xu, J. Y.; Mordvinova, N. E.; Yannello, V.; Ziouani, Y.; González-Ballesteros, N.; Sousa, J. P. S.; Lebedev, O. I.; Kolen’ko, Y. V.; Shatruk, M. Electrocatalytic water oxidation over AlFe2B2. Chem. Sci. 2019, 10, 2796-2804.
[75]
Han, H. S.; Hong, Y. R.; Woo, J.; Mhin, S.; Kim, K. M.; Kwon, J.; Choi, H.; Chung, Y. C.; Song, T. Electronically double-layered metal boride hollow nanoprism as an excellent and robust water oxidation electrocatalysts. Adv. Energy Mater. 2019, 9, 1803799.
[76]
Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684-692.
[77]
Zhang, J.; Li, X. X.; Liu, Y. T.; Zeng, Z. W.; Cheng, X.; Wang, Y. D.; Tu, W. M.; Pan, M. Bi-metallic boride electrocatalysts with enhanced activity for the oxygen evolution reaction. Nanoscale 2018, 10, 11997-12002.
[78]
Xue, C. L.; Li, G. S.; Wang, J. H.; Wang, Y.; Li, L. P. Fe3+ doped amorphous Co2BOy(OH)z with enhanced activity for oxygen evolution reaction. Electrochim. Acta 2018, 280, 1-8.
[79]
Nsanzimana, J. M. V.; Reddu, V.; Peng, Y.; Huang, Z. F.; Wang, C.; Wang, X. Ultrathin amorphous iron-nickel boride nanosheets for highly efficient electrocatalytic oxygen production. Chemistry 2018, 24, 18502-18511.
[80]
Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.
[81]
Nsanzimana, J. M. V.; Dangol, R.; Reddu, V.; Dou, S.; Peng, Y. C.; Dinh, K. N.; Huang, Z. F.; Yan, Q. Y.; Wang, X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl. Mater. Interfaces 2018, 11, 846-855.
[82]
Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Wang, M. H.; Li, N.; Li, J. P. Amorphous CoFeBO nanoparticles as highly active electrocatalysts for efficient water oxidation reaction. Int. J. Hydrogen Energy 2018, 43, 6138-6149.
[83]
Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664-1675.
[84]
Liang, X. G.; Dong, R. T.; Li, D. P.; Bu, X. M.; Li, F. Z.; Shu, L.; Wei, R. J.; Ho, J. C. Coupling of nickel boride and Ni(OH)2 nanosheets with hierarchical interconnected conductive porous structure synergizes the oxygen evolution reaction. ChemCatChem 2018, 10, 4555-4561.
[85]
Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Synthesis of Co-B in porous carbon using a metal-organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochem. Commun. 2018, 86, 140-144.
[86]
Klemenz, S.; Schuch, J.; Hawel, S.; Zieschang, A. M.; Kaiser, B.; Jaegermann, W.; Albert, B. Synthesis of a highly efficient oxygen-evolution electrocatalyst by incorporation of iron into nanoscale cobalt borides. ChemSusChem 2018, 11, 3150-3156.
[87]
Chen, S. R.; Li, Y. Q.; Zhang, Z. H.; Fu, Q.; Bao, X. H. The synergetic effect of h-BN shells and subsurface B in CoBx@h-BN nanocatalysts for enhanced oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 10644-10648.
[88]
Arivu, M.; Masud, J.; Umapathi, S.; Nath, M. Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media. Electrochem. Commun. 2018, 86, 121-125.
[89]
An, L. H.; Sun, Y. F.; Zong, Y. X.; Liu, Q. Y.; Guo, J. X.; Zhang, X. Nickel iron boride nanosheets on rGO for active electrochemical water oxidation. J. Solid State Chem. 2018, 265, 135-139.
[90]
Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; de la Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 2017, 7, 1700381.
[91]
Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy 2017, 38, 175-184.
[92]
Elumeeva, K.; Masa, J.; Medina, D.; Ventosa, E.; Seisel, S.; Kayran, Y. U.; Genç, A.; Bobrowski, T.; Weide, P.; Arbiol, J. et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. J. Mater. Chem. A 2017, 5, 21122-21129.
[93]
Chen, H. Y.; Ouyang, S. X.; Zhao, M.; Li, Y. X.; Ye, J. H. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 40333-40343.
[94]
Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506-7512.
[95]
Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y. et al. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 2019, 15, 1804212.
[96]
Hao, W. J.; Wu, R. B.; Yang, H. Y.; Guo, Y. H. Photothermal coupling electrolysis on Ni-W-B toward practical overall water splitting. J. Mater. Chem. A 2019, 7, 12440-12445.
[97]
Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z. et al. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 764-774.
[98]
Chen, Z. J.; Kang, Q.; Cao, G. X.; Xu, N.; Dai, H. B.; Wang, P. Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 6076-6087.
[99]
Liu, X. X.; Wang, Y. H.; Chen, L. B.; Chen, P. P.; Jia, S. P.; Zhang, Y.; Zhou, S. Y.; Zang, J. B. Co2B and Co nanoparticles immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 37067-37078.
[100]
He, T.; Nsanzimana, J. M. V.; Qi, J. R.; Zhang, J. Y.; Miao, M.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. Synthesis of amorphous boride nanosheets by the chemical reduction of Prussian blue analogs for efficient water electrolysis. J. Mater. Chem. A 2018, 6, 23289-23294.
[101]
Hao, W. J.; Wu, R. B.; Zhang, R. Q.; Ha, Y.; Chen, Z. L.; Wang, L. C.; Yang, Y. J.; Ma, X. H.; Sun, D. L.; Fang, F. et al. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater. 2018, 8, 1801372.
[102]
Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 2017, 5, 12379-12384.
[103]
Guptaa, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64-71.
[104]
Ma, X. Z.; Wen, J.; Zhang, S.; Yuan, H. R.; Li, K. Y.; Yan, F.; Zhang, X. T.; Chen, Y. J. Crystal CoxB (x = 1-3) synthesized by a ball-milling method as high-performance electrocatalysts for the oxygen evolution reaction. ACS Sustainable Chem. Eng. 2017, 5, 10266-10274.
[105]
Lu, W. B.; Liu, T. T.; Xie, L. S.; Tang, C.; Liu, D. N.; Hao, S.; Qu, F. L.; Du, G.; Ma, Y. J.; Asiri, A. M. et al. In situ derived Co-B nanoarray: A high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small 2017, 13, 1700805.
[106]
Li, H.; Wen, P.; Li, Q.; Dun, C. C.; Xing, J. H.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer. S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2017, 7, 1700513.
[107]
Cao, G. X.; Xu, N.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt-tungsten-boron as an active electrocatalyst for water electrolysis. ChemistrySelect 2017, 2, 6187-6193.
[108]
Guo, Y. X.; Yao, Z. Y.; Shang, C. S.; Wang, E. K. Amorphous Co2B grown on CoSe2 nanosheets as a hybrid catalyst for efficient overall water splitting in alkaline medium. ACS Appl. Mater. Interfaces 2017, 9, 39312-39317.
[109]
Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.
[110]
Patel, N.; Miotello, A. Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. Int. J. Hydrogen Energy 2015, 40, 1429-1464.
[111]
Han, H. S.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443-2454.
[112]
Yu, W.; Ou, G.; Si, W. J.; Qi, L. H.; Wu, H. Defective SrTiO3 synthesized by arc-melting. Chem. Commun. 2015, 51, 15685-15688.
[113]
Fahrenholtz, W. G.; Binner, J.; Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res. 2016, 31, 2757-2772.
[114]
Jothi, P. R.; Yubuta, K.; Fokwa, B. P. T. A simple, general synthetic route toward nanoscale transition metal borides. Adv. Mater. 2018, 30, 1704181.
[115]
Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708-712.
[116]
Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 2017, 9, 12231-12247.
[117]
Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 2019, 9, 1901503.
[118]
Fang, M.; Dong, G. F.; Wei, R. J.; Ho, J. C. Hierarchical nanostructures: Design for sustainable water splitting. Adv. Energy Mater. 2017, 7, 1700559.
[119]
Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.
[120]
Hu, F.; Wang, H. Y.; Zhang, Y.; Shen, X. C.; Zhang, G. H.; Pan, Y. B.; Miller, J. T.; Wang, K.; Zhu, S. L.; Yang, X. J. et al. Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material. Small 2019, 15, 1901020.
[121]
Park, H.; Zhang, Y. M.; Scheifers, J. P.; Jothi, P. R.; Encinas, A.; Fokwa, B. P. T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 12915-12918.
[122]
Anantharaj, S.; Karthick, K.; Kundu, S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Mater. Today Energy 2017, 6, 1-26.
[123]
Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.
[124]
Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis. Adv. Energy Mater. 2019, 9, 1901130.
[125]
Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801-6809.
[126]
Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem., Int. Ed. 2016, 55, 2488-2492.
[127]
Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.
[128]
Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703-12706.
[129]
Long, X.; Qiu, W.; Wang, Z.; Wang, Y.; Yang, S. Recent advances in transition metal-based catalysts with heterointerfaces for energy conversion and storage. Mater. Today Chem. 2019, 11, 16-28.
[130]
Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H. F.; Xia, B. Y. Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 15905-15926.
[131]
Zhu, B. J.; Zou, R. Q.; Xu, Q. Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801193.
[132]
Shi, Q. R.; Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. Metal-organic frameworks-based catalysts for electrochemical oxygen evolution. Mater. Horiz. 2019, 6, 684-702.
[133]
She, S. X.; Zhu, Y. L.; Chen, Y. B.; Lu, Q.; Zhou, W.; Shao, Z. P. Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites. Adv. Energy Mater. 2019, 9, 1900429.
[134]
Meng, J. S.; Guo, H. C.; Niu, C. J.; Zhao, Y. L.; Xu, L.; Li, Q.; Mai, L. Q. Advances in structure and property optimizations of battery electrode materials. Joule 2017, 1, 522-547.
[135]
Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140-8162.
[136]
Guan, D. Q.; Zhou, J.; Huang, Y. C.; Dong, C. L.;Wang, J. Q.; Zhou, W.; Shao, Z. P. Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nat. Commun. 2019, 10, 3755.
[137]
Meng, Q. Z.; Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochim. Acta 2019, 296, 198-205.
[138]
Cao, X. Y.; Wang, X. X.; Cui, L.; Jiang, D. G.; Zheng, Y. W.; Liu, J. Q. Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem. Eng. J. 2017, 327, 1085-1092.
[139]
Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530-23535.
[140]
Zhu, Y. H.; Gao, S. M.; Hosmane, N. S. Boron-enriched advanced energy materials. Inorg. Chim. Acta 2018, 471, 577-586.
[141]
Qin, G. Q.; Cui, Q. Y.; Du, A. J.; Wang, W. H.; Sun, Q. Transition metal diborides: A new type of high-performance electrocatalysts for nitrogen reduction. ChemCatChem 2019, 11, 2624-2633.
[142]
Gouget, G.; Debecker, D. P.; Kim, A.; Olivieri, G.; Gallet, J. J.; Bournel, F.; Thomas, C.; Ersen, O.; Moldovan, S.; Sanchez, C. et al. In situ solid-gas reactivity of nanoscaled metal borides from molten salt synthesis. Inorg. Chem. 2017, 56, 9225-9234.
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2019
Revised: 15 December 2019
Accepted: 19 December 2019
Published: 02 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is supported by the Australian Research Council (ARC) Future Fellowship (No. FT160100195). Z. J. C. would like to acknowledge the China Scholarship Council (CSC) for the scholarship support.

Return