Journal Home > Volume 13 , Issue 2

The intercalation of metal is a promising method for the modulating electronic properties in transition metal dichalcogenides (TMDs). However, there still lacks enough knowledge about how the intercalated atoms directly impact the two-dimensional structural layers and modulate the band structures therein. Taking advantage of X-ray absorption fine structure and angle-resolved photoemission spectroscopy, we studied how Cu intercalation influences the host TaSe2 layers in Cu0.03TaSe2 crystals. The intercalated Cu atoms form bonds with Se of the host layers, and there is charge transfer from Cu to Se. By examining the changes of band dispersions, we show that the variation of electronic structures is beyond a simple rigid band model with merely charge doping effect. This work reveals that the unusual change of band dispersions is associated with the formation of bonds between the intercalated metal elements and anion ions in the host layers, and provides a reference for the comprehensive understanding of the electronic structures in intercalated materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A non-rigid shift of band dispersions induced by Cu intercalation in 2H-TaSe2

Show Author's information Pengdong Wang1,§Rashid Khan1,§Zhanfeng Liu1Bo Zhang1Yuliang Li1Sheng Wang1Yunbo Wu1Hongen Zhu1Yi Liu1Guobin Zhang1Dayong Liu2Shuangming Chen1( )Li Song1( )Zhe Sun1,3,4( )
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
Key Laboratory of Strongly-coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China

§ Pengdong Wang and Rashid Khan contributed equally to this work.

Abstract

The intercalation of metal is a promising method for the modulating electronic properties in transition metal dichalcogenides (TMDs). However, there still lacks enough knowledge about how the intercalated atoms directly impact the two-dimensional structural layers and modulate the band structures therein. Taking advantage of X-ray absorption fine structure and angle-resolved photoemission spectroscopy, we studied how Cu intercalation influences the host TaSe2 layers in Cu0.03TaSe2 crystals. The intercalated Cu atoms form bonds with Se of the host layers, and there is charge transfer from Cu to Se. By examining the changes of band dispersions, we show that the variation of electronic structures is beyond a simple rigid band model with merely charge doping effect. This work reveals that the unusual change of band dispersions is associated with the formation of bonds between the intercalated metal elements and anion ions in the host layers, and provides a reference for the comprehensive understanding of the electronic structures in intercalated materials.

Keywords: transition metal dichalcogenides, angle resolved photoemission spectroscopy, Cu-intercalation, band shift

References(29)

[1]
Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193-335.
[2]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[3]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[4]
Neto, A. H. C. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 2001, 86, 4382-4385.
[5]
Liu, Y.; Wang, G.; Ying, T. P.; Lai, X. F.; Jin, S. F.; Liu, N.; Hu, J. P.; Chen, X. L. Understanding doping, vacancy, lattice stability, and superconductivity in KxFe2-ySe2. Adv. Sci. 2016, 3, 1600098.
[6]
Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001.
[7]
Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.
[8]
Muhammad, Z.; Mu, K. J.; Lv, H. F.; Wu, C. Q.; ur Rehman, Z.; Habib, M.; Sun, Z.; Wu, X. J.; Song, L. Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation. Nano Res, 2018, 11, 4914-4922.
[9]
Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544-550.
[10]
Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the Electronic Structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.
[11]
Fang, Y. Q.; Pan, J.; He, J. Q.; Luo, R. C.; Wang, D.; Che, X. L.; Bu, K. J.; Zhao, W.; Liu, P.; Mu, G. et al. Structure re-determination and superconductivity observation of bulk 1T MoS2. Angew. Chem., Int. Ed. 2018, 57, 1232-1235.
[12]
Graebner, J. E. Fermi surface measurements in 2H-TaSe2. Solid State Commun. 1977, 21, 353-356.
[13]
Liu, R.; Olson, C. G.; Tonjes, W. C.; Frindt, R. F. Momentum dependent spectral changes induced by the charge density wave in 2H-TaSe2 and the implication on the CDW mechanism. Phys. Rev. Lett. 1998, 80, 5762-5765.
[14]
Rossnagel, K.; Rotenberg, E.; Koh, H.; Smith, N. V.; Kipp, L. Fermi surface, charge-density-wave gap, and kinks in 2H-TaSe2. Phys. Rev. B 2005, 72, 121103.
[15]
Borisenko, S. V.; Kordyuk, A. A.; Yaresko, A. N.; Zabolotnyy, V. B.; Inosov, D. S.; Schuster, R.; Büchner. B.; Weber, R.; Follath, R.; Patthey, L. et al. Pseudogap and charge density waves in two dimensions. Phys. Rev. Lett. 2008, 100, 196402.
[16]
Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrot. Radiat. 1998, 5, 118-122.
[17]
Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565-7576.
[18]
Kordyuk, A. A.; Evtushinsky, D. V.; Zabolotnyy, V. B.; Haenke, T.; Hess, C.; Buechner, B.; Yaresko, A. N.; Berger, H.; Borisenko, S. V. Chiral honeycomb superstructure, parquet nesting, and Dirac cone formation in Cu-intercalated 2H-TaSe2. arXiv: 1003.1976, 2010.
[19]
Steigmeier, E. F.; Harbeke, G.; Auderset, H.; DiSalvo, F. J. Softening of charge density wave excitations at the superstructure transition in 2H-TaSe2. Solid State Commun. 1976, 20, 667-671.
[20]
Sohrt, C.; Stange, A.; Bauer, M.; Rossnagel, K. How fast can a Peierls-Mott insulator be melted? Faraday Discuss. 2014, 171, 243-257.
[21]
Kumakura, T.; Tan, H.; Handa, T.; Morishita, M.; Fukuyama, H. Charge density waves and superconductivity in 2H-TaSe2. Czech. J. Phys. 1996, 46, 2611-2612.
[22]
Smith, N. V.; Kevan, S. D.; DiSalvo, F. J. Band structures of the layer compounds 1T-TaS2 and 2H-TaSe2 in the presence of commensurate charge-density waves. J. Phys. C Solid State Phys. 1985, 18, 3175-3189.
[23]
Brauer, H. E.; Starnberg, H. I.; Holleboom, L. J.; Hughes, H. P.; Strocov, V N. Na and Cs intercalation of 2H-TaSe2 studied by photoemission. J. Phys. Condes. Matter 2001, 13, 9879-9895.
[24]
Ge, Y. Z.; Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2. Phys. Rev. B 2010, 82, 155133.
[25]
Yan, J. A.; Cruz, M. A. D.; Cook, B.; Varga, K. Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe2. Sci. Rep. 2015, 5, 16646.
[26]
Ryu, H.; Chen, Y.; Kim, H.; Tsai, H. Z.; Tang, S. J.; Jiang, J.; Liou, F.; Kahn, S.; Jia, C. H.; Omrani, A. A. et al. Persistent charge-density-wave order in single-layer TaSe2. Nano Lett. 2018, 18, 689-694.
[27]
Jishi, R. A.; Alyahyaei, H. M. Electronic structure of superconducting copper intercalated transition metal dichalcogenides: First-principles calculations. Phys. Rev. B 2008, 78, 144516.
[28]
Antsyshkina, A. S.; Sadikov, G. G.; Koneshova, T. I.; Sergienko, V. S. X-ray diffraction study of the Cu2Se-In2Se3-Cr2Se3 system near CuInCr2Se5. Inorg. Mater. 2004, 40, 1259-1263.
[29]
Knight, K. S. The crystal structures of CuInSe2 and CuInTe2. Mater. Res. Bull. 1992, 27, 161-167.
File
12274_2020_2613_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2019
Revised: 14 December 2019
Accepted: 18 December 2019
Published: 17 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0402901, 2016YFA0401004), National Natural Science Foundation of China (No. 11674296, 21727801 and 11621063), the Key Research Program of the Chinese Academy of Sciences (No. XDPB01), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2018CXFX002), NSFC-MAECI (51861135202).

Return