Journal Home > Volume 14 , Issue 7

Enhancement of supercapacitors (SCs) with high-energy density and high-power density is still a great challenge. In this paper, a facile strategy for in situ anchoring of Co3O4 particles on N doped carbon cloth (pCoNCC) is reported. Due to the interaction of the doped N and Co3O4, the electrochemical performance improves significantly, reaching 1,940.13 mF·cm-2 at 1 mA·cm-2 and energy density of 172.46 µWh·cm-2 at the power density of 400 µW·cm-2, much larger than that without N doping electrode of 28.5 mF·cm-2. An aqueous symmetric supercapacitor (ASSC) assembled by two pCoNCC electrodes achieves a maximum energy density of 447.42 µWh·cm-2 and a highest power density of 8,000 µW·cm-2. Utilizing such a high-energy storage ASSC, a digital watch and a temperature-humidity detector are powered for nearly 1 and 2 h, respectively. Moreover, the ASSC displays a superb electrochemical stability of 87.7% retention after 10,000 cycles at 40 mA·cm-2. This work would provide a new sight to enhance active materials performance and be beneficial for the future energy storage and supply systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance

Show Author's information Junlin Lu1Jien Li1Jing Wan1Xiangyu Han1Peiyuan Ji1Shuang Luo1Mingxin Gu2Dapeng Wei2( )Chenguo Hu1( )
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, China
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Abstract

Enhancement of supercapacitors (SCs) with high-energy density and high-power density is still a great challenge. In this paper, a facile strategy for in situ anchoring of Co3O4 particles on N doped carbon cloth (pCoNCC) is reported. Due to the interaction of the doped N and Co3O4, the electrochemical performance improves significantly, reaching 1,940.13 mF·cm-2 at 1 mA·cm-2 and energy density of 172.46 µWh·cm-2 at the power density of 400 µW·cm-2, much larger than that without N doping electrode of 28.5 mF·cm-2. An aqueous symmetric supercapacitor (ASSC) assembled by two pCoNCC electrodes achieves a maximum energy density of 447.42 µWh·cm-2 and a highest power density of 8,000 µW·cm-2. Utilizing such a high-energy storage ASSC, a digital watch and a temperature-humidity detector are powered for nearly 1 and 2 h, respectively. Moreover, the ASSC displays a superb electrochemical stability of 87.7% retention after 10,000 cycles at 40 mA·cm-2. This work would provide a new sight to enhance active materials performance and be beneficial for the future energy storage and supply systems.

Keywords: supercapacitor, Co3O4, carbon cloth, N doping

References(49)

[1]
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
[2]
Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828-4850.
[3]
Huang, J.; Xiao, Y. B.; Peng, Z. Y.; Xu, Y. Z.; Li, L. B.; Tan, L. C.; Yuan, K.; Chen, Y. W. Co3O4 supraparticle-based bubble nanofiber and bubble nanosheet with remarkable electrochemical performance. Adv. Sci. 2019, 6, 1900107.
[4]
Xu, J.; Wang, Q. F.; Wang, X. W.; Xiang, Q. Y.; Liang, B.; Chen, D.; Shen, G. Z. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453-5462.
[5]
Cheng, C. F.; Li, X.; Liu, K. W.; Zou, F.; Tung, W. Y.; Huang, Y. F.; Xia, X. H.; Wang, C. L.; Vogt, B. D.; Zhu, Y. A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode. Energy Stor. Mater. 2019, 22, 265-274.
[6]
Li, G. C.; Huang, Y. L.; Yin, Z. L.; Guo, H. J.; Liu, Y.; Cheng, H.; Wu, Y. P.; Ji, X. B.; Wang, J. X. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Stor. Mater. 2020, 24, 304-311.
[7]
Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; He, Y. C.; Yin, X. T.; Que, W. X. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 2018, 28, 1705487.
[8]
Zang, X. N.; Shen, C. W.; Kao, E.; Warren, R.; Zhang, R. P.; Teh, K. S.; Zhong, J. W.; Wei, M. S.; Li, B. X.; Chu, Y. et al. Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 2018, 30, 1704754.
[9]
Ma, J. Y.; Guo, X. T.; Yan, Y.; Xue, H. G.; Pang, H. FeOx-based materials for electrochemical energy storage. Adv. Sci. 2018, 5, 1700986.
[10]
Liu, B. B.; Hou, J. G.; Zhang, T. T.; Xu, C. X.; Liu, H. A three- dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J. Mater. Chem. A 2019, 7, 16222-16230.
[11]
Zhang, N.; Li, Y. F.; Xu, J. Y.; Li, J. J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S. M.; Liu, Y. Y. et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano 2019, 13, 10612-10621.
[12]
Kim, S. G.; Jun, J.; Kim, Y. K.; Kim, J.; Lee, J. S.; Jang, J. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl. Mater. Interfaces 2020, 12, 20613-20622.
[13]
Liu, S. D.; Yin, Y.; Ni, D. X.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Stor. Mater. 2019, 22, 384-396.
[14]
Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076-2081.
[15]
Li, Q.; Lu, C. X.; Chen, C. M.; Xie, L. J.; Liu, Y. D.; Li, Y.; Kong, Q. Q.; Wang, H. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Stor. Mater. 2017, 8, 59-67.
[16]
Hao, J. X.; Wu, W. J.; Wang, Q.; Yan, D.; Liu, G. H.; Peng, S. L. Effect of grain size on electrochemical performance and kinetics of Co3O4 electrode materials. J. Mater. Chem. A 2020, 8, 7192-7196.
[17]
Sun, X. Z.; Lu, Y. X.; Li, T. T.; Zhao, S. S.; Gao, Z. D.; Song, Y. Y. Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. J. Mater. Chem. A 2019, 7, 372-380.
[18]
Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid- state supercapacitors. Small 2020, 16, 1906458.
[19]
Wei, G. J.; Zhou, Z.; Zhao, X. X.; Zhang, W. Q.; An, C. H. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 23721-23730.
[20]
Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard III, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-vacancy abundant ultrafine Co3O4/ graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.
[21]
Liao, Q. Y.; Li, N.; Jin, S. X.; Yang, G. W.; Wang, C. X. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9, 5310-5317.
[22]
Nethravathi, C.; Rajamathi, C. R.; Rajamathi, M.; Wang, X.; Gautam, U. K.; Golberg, D.; Bando, Y. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: Energy storage applications. ACS Nano 2014, 8, 2755-2765.
[23]
Ding, Y. C.; Hu, L. H.; He, D. C.; Peng, Y. Q.; Niu, Y. J.; Li, Z. Q.; Zhang, X. X.; Chen, S. H. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem. Eng. J. 2020, 380, 122489.
[24]
Li, W. Z.; Zu, X. H.; Zeng, Y. X.; Zhang, L. Y.; Tang, Z. L.; Yi, G. B.; Chen, Z. H.; Lin, W. J.; Lin, X. F.; Zhou, H. K. et al. Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular coupling for high-performance flexible supercapacitors. Nano Energy 2020, 67, 104275.
[25]
Sun, D. Y.; He, L. W.; Chen, R. Q.; Lin, Z. Y.; Lin, S. S.; Xiao, C. X.; Lin, B. Z. The synthesis, characterization and electrochemical performance of hollow sandwich microtubules composed of ultrathin Co3O4 nanosheets and porous carbon using a bio-template. J. Mater. Chem. A 2018, 6, 18987-18993.
[26]
Vilian, A. T. E.; Dinesh, B.; Rethinasabapathy, M.; Hwang, S. K.; Jin, C. S.; Huh, Y. S.; Han, Y. K. Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 2018, 6, 14367-14379.
[27]
Xie, L.; Wang, H. Y.; Chen, C. H.; Mao, S. J.; Chen, Y. Q.; Li, H. R.; Wang, Y. Cooperative assembly of asymmetric carbonaceous bivalve- like superstructures from multiple building blocks. Research 2018, 2018, 5807980.
[28]
Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676-2682.
[29]
Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.
[30]
Horng, Y. Y.; Lu, Y. C.; Hsu, Y. K.; Chen, C. C.; Chen, L. C.; Chen, K. H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 2010, 195, 4418-4422.
[31]
Xu, W. N.; Lu, J. L.; Huo, W. C.; Li, J. E.; Wang, X.; Zhang, C. L.; Gu, X.; Hu, C. G. Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 2018, 10, 14304-14313.
[32]
Dai, S. G.; Liu, J. L.; Wang, C. S.; Wang, X.; Xi, Y.; Wei, D. P.; Hu, C. G. Hierarchical porous nanostructures of manganese(III) oxyhydroxide for all-solid-state flexible supercapacitors. Energy Technol. 2016, 4, 1450-1454.
[33]
Li, J. E.; Luo, S.; Wang, C. C.; Tang, Q.; Wang, Y. W.; Han, X. Y.; Ran, H.; Wan, J.; Gu, X.; Wang, X. et al. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Res. 2020, 13, 759-767.
[34]
Lu, J. L.; Xu, W. N.; Li, S. Q.; Liu, W. L.; Javed, M. S.; Liu, G. L.; Hu, C. G. Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. J. Mater. Sci. 2018, 53, 739-748.
[35]
Wang, H. Y.; Chen, J. Y.; Fan, R. X.; Wang, Y. A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustain. Energy Fuels 2018, 2, 2727-2732.
[36]
Wang, H. Y.; Xu, C. M.; Chen, Y. Q.; Wang, Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Stor. Mater. 2017, 8, 127-133.
[37]
Wang, H. Y.; Deng, J.; Xu, C. M.; Chen, Y. Q.; Xu, F.; Wang, J.; Wang, Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Stor. Mater. 2017, 7, 216-221.
[38]
Wang, M. J.; Song, X. F.; Yang, Q.; Hua, H.; Dai, S. G.; Hu, C. G.; Wei, D. P. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation. J. Power Sources 2015, 273, 624-630.
[39]
Li, Y. R.; Wang, X.; Yang, Q.; Javed, M. S.; Liu, Q. P.; Xu, W. N.; Hu, C. G.; Wei, D. P. Ultra-fine CuO nanoparticles embedded in three- dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim. Acta 2017, 234, 63-70.
[40]
Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[41]
Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695-10702.
[42]
Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288-6296.
[43]
Sun, G. L.; Ma, L. Y.; Ran, J. B.; Shen, X. Y.; Tong, H. Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: Implications for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9542-9554.
[44]
Qorbani, M.; Chou, T. c.; Lee, Y. H.; Samireddi, S.; Naseri, N.; Ganguly, A.; Esfandiar, A.; Wang, C. H.; Chen, L. C.; Chen, K. H. et al. Multi-porous Co3O4 nanoflakes@sponge-like few-layer partially reduced graphene oxide hybrids: Towards highly stable asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 12569-12577.
[45]
Xu, K. B.; Ma, S.; Shen, Y. N.; Ren, Q. L.; Yang, J. M.; Chen, X.; Hu, J. Q. CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem. Eng. J. 2019, 369, 363-369.
[46]
Lee, G.; Jang, J. High-performance hybrid supercapacitors based on novel Co3O4/Co(OH)2 hybrids synthesized with various-sized metal-organic framework templates. J. Power Sources 2019, 423, 115-124.
[47]
Chen, M. Y.; Li, W. H.; Ma, W. H.; Qi, P. C.; Yang, W. J.; Wang, S. Y.; Lu, Y.; Tang, Y. W. Remarkable enhancement of the electrochemical properties of Co3O4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell. J. Mater. Chem. A 2019, 7, 1678-1686.
[48]
Huang, Y. P.; Cui, F.; Bao, J.; Zhao, Y.; Lian, J. B.; Liu, T. X.; Li, H. M. MnCo2S4/FeCo2S4 “lollipop” arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 20778-20789.
[49]
Lv, H. H.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Yu, T. T.; Lv, M. L.; Wang, J. W.; Zhai, Y.; Hu, J. Q. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 14287-14298.
Video
12274_2019_3242_MOESM2_ESM.avi
12274_2019_3242_MOESM3_ESM.avi
File
12274_2019_3242_MOESM1_ESM.pdf (9.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2020
Revised: 12 November 2020
Accepted: 13 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51772036 and 51572040) and the Fundamental Research Funds for the Central Universities (Nos. 2019CDXZWL001 and 2020CDCGJ005). We would like to thank Analytical and Testing Center of Chongqing University for ESEM, BET, XPS, EDS and XRD measurement.

Return