Journal Home > Volume 13 , Issue 1

Potassium-ion batteries are regarded as the low-cost alternative to lithium-ion batteries. However, their development is hampered by the lack of suitable electrode materials. In this work, we demonstrate that MoS2 with expanded interlayers represents a promising candidate for the electrochemical storage of potassium ions. Hierarchical interlayer-expanded MoS2 assemblies supported on carbon nanotubes are prepared via a straightforward solution method. The increased interlayer spacing not only enables the better accommodation of foreign ions, but also lowers the diffusion energy barrier and improves diffusion kinetics of ions. When investigated as the anode material of potassium ion batteries, our interlayer-expanded MoS2 assemblies exhibit an excellent electrochemical performance with large capacity (up to ~ 520 mAh·g-1), good rate capability (~ 310 mAh·g-1 at 1,000 mA·g-1) and impressive cycling stability, superior to most competitors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions

Show Author's information Sijia DiPan DingYeyun WangYunling WuJun DengLin JiaYanguang Li( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China

Abstract

Potassium-ion batteries are regarded as the low-cost alternative to lithium-ion batteries. However, their development is hampered by the lack of suitable electrode materials. In this work, we demonstrate that MoS2 with expanded interlayers represents a promising candidate for the electrochemical storage of potassium ions. Hierarchical interlayer-expanded MoS2 assemblies supported on carbon nanotubes are prepared via a straightforward solution method. The increased interlayer spacing not only enables the better accommodation of foreign ions, but also lowers the diffusion energy barrier and improves diffusion kinetics of ions. When investigated as the anode material of potassium ion batteries, our interlayer-expanded MoS2 assemblies exhibit an excellent electrochemical performance with large capacity (up to ~ 520 mAh·g-1), good rate capability (~ 310 mAh·g-1 at 1,000 mA·g-1) and impressive cycling stability, superior to most competitors.

Keywords: molybdenum disulfide, hierarchical structure, interlayer expansion, potassium ion batteries

References(45)

[1]
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.
[2]
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
[3]
Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
[4]
Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.
[5]
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102-120.
[6]
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.
[7]
Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340-361.
[8]
Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
[9]
Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.
[10]
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[11]
Feng, Y. H.; Chen, S. H.; Wang, J.; Lu, B. G. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 2020, 43, 129-138.
[12]
Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.
[13]
Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-Ion batteries. Adv. Energy Mater. 2018, 8, 1702384.
[14]
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
[15]
Xu, J.; Zhang, J. J.; Zhang, W. J.; Lee, C. S. Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater. 2017, 7, 1700571.
[16]
Yun, Q. B.; Lu, Q. P.; Zhang, X.; Tan, C. L.; Zhang, H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem., Int. Ed. 2018, 57, 626-646.
[17]
Zhou, J. H.; Wang, L.; Yang, M. Y.; Wu, J. H.; Chen, F. J.; Huang, W. J.; Han, N.; Ye, H. L.; Zhao, F. P.; Li, Y. G. et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061.
[18]
Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313-1321.
[19]
Jia, B. R.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Yu, Q. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 2018, 6, 11147-11153.
[20]
Jia, B. J.; Yu, Q. Y.; Zhao, Y.Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.
[21]
Rasamani, K. D.; Alimohammadi, F.; Sun, Y. G. Interlayer-expanded MoS2. Mater. Today 2017, 20, 83-91.
[22]
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.
[23]
Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.
[24]
Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794-12798.
[25]
Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.
[26]
Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.
[27]
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
[28]
Wang, X. F.; Guan, Z. R. X.; Li, Y. J.; Wang, Z. X.; Chen, L. Q. Guest-host interactions and their impacts on structure and performance of nano-MoS2. Nanoscale 2015, 7, 637-641.
[29]
Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681-2688.
[30]
Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622-2627.
[31]
Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475-9478.
[32]
Dong, Y. L.; Xu, Y.; Li, W.; Fu, Q.; Wu, M. H.; Manske, E.; Kröger, J.; Lei, Y. Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: A case study of molybdenum disulfide. Small 2019, 15, 1900497.
[33]
Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 2017, 13, 1701471.
[34]
Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J. Mater. Chem. A 2019, 7, 5760-5768.
[35]
Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.
[36]
Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.
[37]
Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434-442.
[38]
Wang, Y. S.; Wang, Z. P.; Chen, Y. J.; Zhang, H.; Yousaf, M.; Wu, H. S.; Zou, M. C.; Cao, A. Y.; Han, R. P. S. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 2018, 30, 1802074.
[39]
Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.
[40]
Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.
[41]
Yi, Z.; Lin, N.; Zhang, W. Q.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018, 10, 13236-13241.
[42]
Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[43]
Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.
[44]
Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.
[45]
Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448-3456.
File
12274_2019_2604_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 October 2019
Revised: 01 December 2019
Accepted: 11 December 2019
Published: 02 January 2020
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51972219), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Return