Journal Home > Volume 13 , Issue 1

Aqueous Zinc-ion batteries (ZIBs), using zinc negative electrode and aqueous electrolyte, have attracted great attention in energy storage field due to the reliable safety and low-cost. A composite material comprised of VO2·0.2H2O nanocuboids anchored on graphene sheets (VOG) is synthesized through a facile and efficient microwave-assisted solvothermal strategy and is used as aqueous ZIBs cathode material. Owing to the synergistic effects between the high conductivity of graphene sheets and the desirable structural features of VO2·0.2H2O nanocuboids, the VOG electrode has excellent electronic and ionic transport ability, resulting in superior Zn ions storage performance. The Zn/VOG system delivers ultrahigh specific capacity of 423 mAh·g-1 at 0.25 A·g-1 and exhibits good cycling stability of up to 1,000 cycles at 8 A·g-1 with 87% capacity retention. Systematical structural and elemental characterizations confirm that the interlayer space of VO2·0.2H2O nanocuboids can adapt to the reversible Zn ions insertion/extraction. The as-prepared VOG composite is a promising cathode material with remarkable electrochemical performance for low-cost and safe aqueous rechargeable ZIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries

Show Author's information Dedong Jia1( )Kun Zheng1Ming Song2Hua Tan3Aitang Zhang1Lihua Wang1Lijun Yue1Da Li1Chenwei Li1( )Jingquan Liu1( )
College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, School of Electromechanical Engineering, Qingdao University, Qingdao 266071, China
College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Abstract

Aqueous Zinc-ion batteries (ZIBs), using zinc negative electrode and aqueous electrolyte, have attracted great attention in energy storage field due to the reliable safety and low-cost. A composite material comprised of VO2·0.2H2O nanocuboids anchored on graphene sheets (VOG) is synthesized through a facile and efficient microwave-assisted solvothermal strategy and is used as aqueous ZIBs cathode material. Owing to the synergistic effects between the high conductivity of graphene sheets and the desirable structural features of VO2·0.2H2O nanocuboids, the VOG electrode has excellent electronic and ionic transport ability, resulting in superior Zn ions storage performance. The Zn/VOG system delivers ultrahigh specific capacity of 423 mAh·g-1 at 0.25 A·g-1 and exhibits good cycling stability of up to 1,000 cycles at 8 A·g-1 with 87% capacity retention. Systematical structural and elemental characterizations confirm that the interlayer space of VO2·0.2H2O nanocuboids can adapt to the reversible Zn ions insertion/extraction. The as-prepared VOG composite is a promising cathode material with remarkable electrochemical performance for low-cost and safe aqueous rechargeable ZIBs.

Keywords: VO2·0.2H2O nanocuboids, graphene sheet, aqueous zinc-ion battery, ultrahigh capacity, electron and ion transport

References(49)

[1]
Shi, J. L.; Xiao, D. D.; Ge, M. Y.; Yu, X. Q.; Chu, Y.; Huang, X. J.; Zhang, X. D.; Xin, Y. X.; Yang, X. Q. ; Guo, Y. G. et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 2018, 30, 1705575.
[2]
Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593-4607.
[3]
Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941-3946.
[4]
Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.
[5]
He, H. Y.; Fu, W.; Wang, H. T.; Jin, C. H.; Fan, H. J.; Liu, Z. Silica-modified SnO2-graphene “slime” for self-enhanced Li-ion battery anode. Nano Energy 2017, 34, 449-455.
[6]
Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738-744.
[7]
Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
[8]
Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
[9]
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
[10]
Song, M.; Tan, H. Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.
[11]
Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 11, 3288-3304.
[12]
Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758-1762.
[13]
He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.
[14]
He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 2017, 7, 1601920.
[15]
Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 2018, 30, 1803181.
[16]
Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775-9778.
[17]
Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. A.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.
[18]
Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158-12164.
[19]
Lee, J. S.; Nam, G.; Sun, J.; Higashi, S.; Lee, H. W.; Lee, S.; Chen, W.; Cui, Y.; Cho, J. Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery. Adv. Energy Mater. 2016, 6, 1601052.
[20]
Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G. Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144.
[21]
Guo, S.; Fang, G. Z.; Liang, S. Q.; Chen, M. H.; Wu, X. W.; Zhou, J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater. 2019, 180, 51-59.
[22]
Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157-3162.
[23]
Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.
[24]
Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 2018, 54, 4041-4044.
[25]
Chen, Z. J.; Gao, S. K.; Jiang, L. L.; Wei, M. D.; Wei, K. M. Crystalline VO2(B) nanorods with a rectangular cross-section. Mater. Chem. Phys. 2010, 121, 254-258.
[26]
Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Stor. Mater. 2019, 17, 143-150.
[27]
Li, Z. L.; Ganapathy, S.; Xu, Y. L.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 2019, 9, 1900237.
[28]
Rao Popuri, S.; Miclau, M.; Artemenko, A.; Labrugere, C.; Villesuzanne, A.; Pollet, M. Rapid hydrothermal synthesis of VO2(B) and its conversion to thermochromic VO2(M1). Inorg. Chem. 2013, 52, 4780-4785.
[29]
Rakhi, R. B.; Nagaraju, D. H.; Beaujuge, P.; Alshareef, H. N. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte. Electrochim. Acta 2016, 220, 601-608.
[30]
Wang, C. Q.; Shao, J.; Liu, X. L.; Chen, Y.; Xiong, W. M.; Zhang, X. Y.; Zheng, Y. Phase transition characteristics in the conductivity of VO2(A) nanowires: Size and surface effects. Phys. Chem. Chem. Phys. 2016, 18, 10262-10269.
[31]
Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Jr. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys. 2004, 96, 1209-1213.
[32]
Liu, L.; Liu, Q.; Zhao, W.; Li, G. C.; Wang, L. M.; Shi, W. D.; Chen, L. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries. Nanotechnology 2017, 28, 065404.
[33]
Lin, T. G.; Wang, L. P.; Wang, X. F.; Zhang, Y. F.; Yu, Y. H. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl. Surf. Sci. 2016, 379, 179-185.
[34]
Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974-978.
[35]
Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687.
[36]
Fang, W. C. Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 2008, 112, 11552-11555.
[37]
Qin, W. Q.; Yang, C. R.; Yi, R.; Gao, G. H. Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. J. NanoMater. 2011, 2011, 159259.
[38]
Twu, J.; Shih, C. F.; Guo, T. H.; Chen, K. H. Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate. J. Mater. Chem. 1997, 7, 2273-2277.
[39]
Chen, S. H.; Wang, J.; Fan, L.; Ma. R. F.; Zhang, E. J.; Liu, Q.; Lu, B. A. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 2018, 8, 1800140.
[40]
Kaper, H.; Willinger, M. G.; Djerdj, I.; Gross, S.; Antonietti, M.; Smarsly, B. M. IL-assisted synthesis of V2O5 nanocomposites and VO2 nanosheets. J. Mater. Chem. 2008, 18, 5761-5769.
[41]
Nethravathi, C.; Viswanath, B.; Michael, J.; Rajamath, M. Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 2012, 50, 4839-4846.
[42]
Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Aqueous rechargeable Zn-ion batteries: An imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A 2018, 6, 3850-3856.
[43]
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.
[44]
Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F.. J; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.
[45]
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
[46]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[47]
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.
[48]
Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305-3309.
[49]
Zhu, K.; Yan, X.; Zhang, Y. Q.; Wang, Y. H.; Su, A. Y.; Bie, X. F.; Zhang, D.; Du, F.; Wang, C. Z.; Chen, G. et al. Synthesis of H2V3O8/reduced graphene oxide composite as a promising cathode material for lithium-ion batteries. ChemPlusChem 2014, 79, 447-453.
File
12274_2019_2603_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2019
Revised: 08 December 2019
Accepted: 11 December 2019
Published: 03 January 2020
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

The authors are thankful to funds from the China Postdoctoral Science Foundation (No. RZ1900011127), Qingdao Innovation Leading Talent Program and Taishan Scholars Program and Natural Science Foundation of Shandong (No. ZR2017BEM028). M. S. is thankful to funds from the Science Foundation of Jiangsu Province (No. BK20171169). C. W. L. thanks the support from National Natural Science Foundation of China (No. 51802168), China Postdoctoral Science Foundation (No. 2018M630753), Natural Science Foundation of Shandong Province (No. ZR2018BEM006), and Qingdao Postdoctoral Application Research Project.

Return