Journal Home > Volume 13 , Issue 2

The rechargeable magnesium batteries (RMBs) are getting more and more attention because of their high-energy density, high-security and low-cost. Nevertheless, the high charge density of Mg2+ makes the diffusion of Mg2+ in the conventional cathodes very slow, resulting in a lack of appropriate electrode materials for RMBs. In this work, we enlarge the layer spacing of V2O5 by introducing Na+ in the crystal structure to promote the diffusion kinetics of Mg2+. The NaV6O15 (NVO) synthesized by a facile method is studied as a cathode material for RMBs with the anhydrous pure Mg2+ electrolyte. As a result, the NVO not only exhibits high discharge capacity (119.2 mAh·g-1 after 100 cycles at the current density of 20 mA·g-1) and working voltage (above 1.6 V vs. Mg2+/Mg), but also expresses good rate capability. Besides, the ex-situ characterizations results reveal that the Mg2+ storage mechanism in NVO is based on the intercalation and de-intercalation. The density functional theory (DFT) calculation results further indicate that Mg2+ tends to occupy the semi-occupied sites of Na+ in the NVO. Moreover, the galvanostatic intermittent titration technique (GITT) demonstrates that NVO electrode has the fast diffusion kinetics of Mg2+ during discharge process ranging from 7.55 × 10-13 to 2.41 × 10-11 cm2·s-1. Our work proves that the NVO is a potential cathode material for RMBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance

Show Author's information Dongzheng Wu1Jing Zeng1Haiming Hua1Junnan Wu1Yang Yang2( )Jinbao Zhao1( )
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The rechargeable magnesium batteries (RMBs) are getting more and more attention because of their high-energy density, high-security and low-cost. Nevertheless, the high charge density of Mg2+ makes the diffusion of Mg2+ in the conventional cathodes very slow, resulting in a lack of appropriate electrode materials for RMBs. In this work, we enlarge the layer spacing of V2O5 by introducing Na+ in the crystal structure to promote the diffusion kinetics of Mg2+. The NaV6O15 (NVO) synthesized by a facile method is studied as a cathode material for RMBs with the anhydrous pure Mg2+ electrolyte. As a result, the NVO not only exhibits high discharge capacity (119.2 mAh·g-1 after 100 cycles at the current density of 20 mA·g-1) and working voltage (above 1.6 V vs. Mg2+/Mg), but also expresses good rate capability. Besides, the ex-situ characterizations results reveal that the Mg2+ storage mechanism in NVO is based on the intercalation and de-intercalation. The density functional theory (DFT) calculation results further indicate that Mg2+ tends to occupy the semi-occupied sites of Na+ in the NVO. Moreover, the galvanostatic intermittent titration technique (GITT) demonstrates that NVO electrode has the fast diffusion kinetics of Mg2+ during discharge process ranging from 7.55 × 10-13 to 2.41 × 10-11 cm2·s-1. Our work proves that the NVO is a potential cathode material for RMBs.

Keywords: cathode, electrochemical mechanism, NaV6O15, alkali metal pre-intercalation, rechargeable magnesium battery

References(56)

[1]
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
[2]
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.
[3]
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.
[4]
McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P.; van Tendeloo, G. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for li-ion batteries. Science 2015, 350, 1516-1521.
[5]
Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. A.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.
[6]
Zhao, J. H.; Kang, T.; Chu, Y. L.; Chen, P.; Jin, F.; Shen, Y. B.; Chen, L. W. A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano Res. 2019, 12, 1355-1360.
[7]
Chen, S. L.; Zou, J.; Li, Y. H.; Li, N.; Wu, M.; Lin, J. H.; Zhang, J. M.; Cao, J.; Feng, J. C.; Niu, X. B. et al. Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window. Nano Res. 2019, 12, 1675-1681.
[8]
Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683-11720.
[9]
Wang, Y.; Wang, C.; Yi, X.; Hu, Y.; Wang, L.; Ma, L.; Zhu, G.; Chen, T.; Jin, Z. Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites. Energy Storage Materials 2019, 23, 741-748.
[10]
Wang, Y.; Liu, Z.; Wang, C.; Yi, X.; Chen, R.; Ma, L.; Hu, Y.; Zhu, G.; Chen, T.; Tie, Z.; et al. Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv. Mater. 2018, 30, 1802563.
[11]
Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Emerging non-lithium ion batteries. Energy Storage Materials 2016, 4, 103-129.
[12]
Wang, Y.; Xue, X.; Liu, P.; Wang, C.; Yi, X.; Hu, Y.; Ma, L.; Zhu, G.; Chen, R.; Chen, T.; et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2-x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 2018, 12, 12492-12502.
[13]
Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014, 39, 453-460.
[14]
Koketsu, T.; Ma, J. W.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16, 1142-1148.
[15]
Zhang, R. G.; Arthur, T. S.; Ling, C.; Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources 2015, 282, 630-638.
[16]
Amatucci, G. G.; Badway, F.; Singhal, A.; Beaudoin, B.; Skandan, G.; Bowmer, T.; Plitz, I.; Pereira, N.; Chapman, T.; Jaworski, R. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 2001, 148, A940-A950.
[17]
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.
[18]
NuLi, Y.; Zheng, Y. P.; Wang, Y.; Yang, J.; Wang, J. L. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 2011, 21, 12437-12443.
[19]
Ma, Z.; MacFarlane, D. R.; Kar, M. Mg cathode materials and electrolytes for rechargeable Mg batteries: A review. Batter. Supercaps. 2019, 2, 115-127.
[20]
Zhang, R. G.; Ling, C. Unveil the chemistry of olivine FePO4 as magnesium battery cathode. ACS Appl. Mater. Interfaces 2016, 8, 18018-18026.
[21]
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724-727.
[22]
Xiong, F. Y.; Fan, Y. Q.; Tan, S. S.; Zhou, L. M.; Xu, Y. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Magnesium storage performance and mechanism of CuS cathode. Nano Energy 2018, 47, 210-216.
[23]
Zhang, R. G.; Yu, X. Q.; Nam, K. W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X. Q.; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110-113.
[24]
Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem., Int. Ed. 2005, 44, 4391-4395.
[25]
Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086-12087.
[26]
Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 2013, 7, 11218-11226.
[27]
Novák, P.; Desilvestro, J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 1993, 140, 140-144.
[28]
Novák, P.; Scheifele, W.; Joho, F.; Haas, O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc. 1995, 142, 2544-2550.
[29]
Gautam, G. S.; Canepa, P.; Malik, R.; Liu, M.; Persson, K.; Ceder, G. First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 2015, 51, 13619-13622.
[30]
Sai Gautam, G.; Canepa, P.; Richards, W. D.; Malik, R.; Ceder, G. Role of structural H2O in intercalation electrodes: The case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 2016, 16, 2426-2431.
[31]
Yu, L.; Zhang, X. G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci. 2004, 278, 160-165.
[32]
Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J. Power Sources 2017, 343, 580-591.
[33]
Rashad, M.; Zhang, H. Z.; Asif, M.; Feng, K.; Li, X. F.; Zhang, H. M. Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces 2018, 10, 4757-4766.
[34]
Tang, H.; Xiong, F. Y.; Jiang, Y. L.; Pei, C. Y.; Tan, S. S.; Yang, W.; Li, M. S.; An, Q. Y.; Mai, L. Q. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 2019, 58, 347-354.
[35]
Deng, X. W.; Xu, Y. A.; An, Q. Y.; Xiong, F. Y.; Tan, S. S.; Wu, L. M.; Mai, L. Q. Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 2019, 7, 10644-10650.
[36]
Cabello, M.; Nacimiento, F.; Alcántara, R.; Lavela, P.; Ortiz, G.; Tirado, J. L. Nanobelts of beta-sodium vanadate as electrode for magnesium and dual magnesium-sodium batteries. J. Electrochem. Soc. 2016, 163, A2781-A2790.
[37]
Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964-10972.
[38]
Jiang, D. L.; Wang, H.; Li, G. P.; Li, G. Q.; Lan, X. Z.; Abib, M. H.; Zhang, Z. P.; Jiang, Y. Self-combustion synthesis and ion diffusion performance of NaV6O15 nanoplates as cathode materials for sodium-ion batteries. J. Electrochem. Soc. 2015, 162, A697-A703.
[39]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[40]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[41]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[42]
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.
[43]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[44]
Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653-658.
[45]
Pereira-Ramos, J. P.; Messina, R.; Znaidi, L.; Baffier, N. Electrochemical lithium intercalation in Na0.33V2O5 bronze prepared by sol-gel processes. Solid State Ionics 1988, 28, 886-894.
[46]
Wang, Y. R.; Xue, X. L.; Liu, P. Y.; Wang, C. X.; Yi, X.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Chen, R. P.; Chen, T. et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2-x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 2018, 12, 12492-12502.
[47]
Cabello, M.; Alcántara, R.; Nacimiento, F.; Lavela, P.; Aragón, M. J.; Tirado, J. L. Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: A case of sodium-magnesium hybrid battery. Electrochim. Acta 2017, 246, 908-913.
[48]
Tang, H.; Peng, Z.; Wu, L.; Xiong, F. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Vanadium-based cathode materials for rechargeable multivalent batteries: Challenges and opportunities. Electrochem. Energy Rev. 2018, 1, 169-199.
[49]
Liu, H. M.; Wang, Y. G.; Li, L.; Wang, K. X.; Hosono, E.; Zhou, H. S. Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem. 2009, 19, 7885-7891.
[50]
Liu, H. M.; Zhou, H. S.; Chen, L. P.; Tang, Z. F.; Yang, W. S. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J. Power Sources 2011, 196, 814-819.
[51]
Zhao, M. S.; Zhang, W. G.; Song, X. P. Lithium-ion storage properties of a micro/nanosheet-like NaV6O15 anode in aqueous solution. Dalton Trans. 2017, 46, 3857-3863.
[52]
Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 2002, 148, 45-51.
[53]
Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384-2390.
[54]
Zeng, J.; Wu, D. Z.; Wang, X.; Wu, J. N.; Li, J. Y.; Wang, J.; Zhao, J. B. Insights into the Mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte. Chem. Eng. J. 2019, 372, 37-45.
[55]
Zeng, J.; Yang, Y.; Lai, S. B.; Huang, J. X.; Zhang, Y. Y.; Wang, J.; Zhao, J. B. A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries. Chem. -Eur. J. 2017, 23, 16898-16905.
[56]
Yang, Y.; Huang, J. X.; Zeng, J.; Xiong, J.; Zhao, J. B. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 32801-32811.
File
12274_2019_2602_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2019
Revised: 12 November 2019
Accepted: 10 December 2019
Published: 27 January 2020
Issue date: February 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21875198 and 21621091). The authors also would like to thank Prof. D. W. Liao for his valuable suggestions and guidance.

Return