Journal Home > Volume 13 , Issue 5

Atomically thin transition metal dichalcogenides (TMDs) have distinct opto-electronic properties including enhanced luminescence and high on-off current ratios, which can be further modulated by making more complex TMD heterostructures. However, resolution limits of conventional optical methods do not allow for direct nanoscale optical-structural correlation measurements in these materials, particularly of buried interfaces in TMD heterostructures. Here we use, for the first time, electron beam induced cathodoluminescence in a scanning transmission electron microscope (CL-STEM) to measure optical properties of monolayer TMDs (WS2, MoS2 and WSSe alloy) encapsulated between layers of hBN. We observe dark areas resulting from localized (~ 100 nm) imperfect interfaces and monolayer folding, which shows that the intimate contact between layers in this application-relevant heterostructure is required for proper inter layer coupling. We also realize a suitable imaging method that minimizes electron-beam induced changes and provides measurement of intrinsic properties. To overcome the limitation of small electron interaction volume in TMD monolayer (and hence low photon yield), we find that encapsulation of TMD monolayers with hBN and subsequent annealing is important. CL-STEM offers to be a powerful method to directly measure structure-optical correspondence in lateral or vertical heterostructures and alloys.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct optical-structure correlation in atomically thin dichalcogenides and heterostructures

Show Author's information Akshay SinghHae Yeon LeeSilvija Gradečak( )
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02141, USA

Abstract

Atomically thin transition metal dichalcogenides (TMDs) have distinct opto-electronic properties including enhanced luminescence and high on-off current ratios, which can be further modulated by making more complex TMD heterostructures. However, resolution limits of conventional optical methods do not allow for direct nanoscale optical-structural correlation measurements in these materials, particularly of buried interfaces in TMD heterostructures. Here we use, for the first time, electron beam induced cathodoluminescence in a scanning transmission electron microscope (CL-STEM) to measure optical properties of monolayer TMDs (WS2, MoS2 and WSSe alloy) encapsulated between layers of hBN. We observe dark areas resulting from localized (~ 100 nm) imperfect interfaces and monolayer folding, which shows that the intimate contact between layers in this application-relevant heterostructure is required for proper inter layer coupling. We also realize a suitable imaging method that minimizes electron-beam induced changes and provides measurement of intrinsic properties. To overcome the limitation of small electron interaction volume in TMD monolayer (and hence low photon yield), we find that encapsulation of TMD monolayers with hBN and subsequent annealing is important. CL-STEM offers to be a powerful method to directly measure structure-optical correspondence in lateral or vertical heterostructures and alloys.

Keywords: two-dimensional (2D) materials, transition metal dichalcogenides, heterostructures, cathodoluminescence, interfaces

References(41)

[1]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[2]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[3]
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[4]
Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.
[5]
Bogaert, K.; Liu, S.; Chesin, J.; Titow, D.; Gradečak, S.; Garaj, S. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett. 2016, 16, 5129-5134.
[6]
Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos-Gomez, A.; Van Der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3339-3358.
[7]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[8]
Singh, A.; Tran, K.; Kolarczik, M.; Seifert, J.; Wang, Y. P.; Hao, K.; Pleskot, D.; Gabor, N. M.; Helmrich, S.; Owschimikow, N. et al. Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett. 2016, 117, 257402.
[9]
Teng, F.; Hu, K.; Ouyang, W. X.; Fang, X. S. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, 1706262.
[10]
Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 2017, 7, 021026.
[11]
Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.
[12]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[13]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[14]
Tran, K.; Singh, A.; Seifert, J.; Wang, Y. P.; Hao, K.; Huang, J. K.; Li, L. J.; Taniguchi, T.; Watanabe, K.; Li, X. Q. Disorder-dependent valley properties in monolayer WSe2. Phys. Rev. B 2017, 96, 041302.
[15]
Movva, H. C. P.; Fallahazad, B.; Kim, K.; Larentis, S.; Taniguchi, T.; Watanabe, K.; Banerjee, S. K.; Tutuc, E. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 2017, 118, 247701.
[16]
Pizzocchero, F.; Gammelgaard, L.; Jessen, B. S.; Caridad, J. M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T. J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894.
[17]
Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[18]
Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M. et al. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nat. Commun. 2016, 7, 13044.
[19]
Bozheyev, F.; Valiev, D.; Nemkayeva, R. Pulsed cathodoluminescence and Raman spectra of MoS2 and WS2 nanocrystals and their combination MoS2/WS2 produced by self-propagating high-temperature synthesis. Appl. Phys. Lett. 2016, 108, 093111.
[20]
Zheng, S. J.; So, J. K.; Liu, F. C.; Liu, Z.; Zheludev, N.; Fan, H. J. Giant enhancement of cathodoluminescence of monolayer transitional metal dichalcogenides semiconductors. Nano Lett. 2017, 17, 6475-6480.
[21]
Lim, S. K.; Brewster, M.; Qian, F.; Li, Y.; Lieber, C. M.; Gradečak, S. Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution. Nano Lett. 2009, 9, 3940-3944.
[22]
Kociak, M.; Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 2017, 176, 112-131.
[23]
Pennycook, S. J.; Brown, L. M.; Craven, A. J. Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A 1980, 41, 589-600.
[24]
Yamamoto, N.; Spence, J. C. H.; Fathy, D. Cathodoluminescence and polarization studies from individual dislocations in diamond. Philos. Mag. B 1984, 49, 609-629.
[25]
Zhou, X.; Lu, M. Y.; Lu, Y. J.; Jones, E. J.; Gwo, S.; Gradečak, S. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures. ACS Nano 2015, 9, 2868-2875.
[26]
Hentz, O.; Zhao, Z. B.; Gradečak, S. Impacts of ion segregation on local optical properties in mixed halide perovskite films. Nano Lett. 2016, 16, 1485-1490.
[27]
Sutter, P.; Komsa, H. P.; Krasheninnikov, A. V.; Huang, Y.; Sutter, E. Luminescence of defects in the structural transformation of layered tin dichalcogenides. Appl. Phys. Lett. 2017, 111, 262102.
[28]
Sutter, P.; Argyropoulos, C.; Sutter, E. Germanium sulfide nano-optics probed by STEM-cathodoluminescence spectroscopy. Nano Lett. 2018, 18, 4576-4583.
[29]
Ahn, S.; Kim, G.; Nayak, P. K.; Yoon, S. I.; Lim, H.; Shin, H. J.; Shin, H. S. Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers. ACS Nano 2016, 10, 8973-8979.
[30]
Amani, M.; Taheri, P.; Addou, R.; Ahn, G. H.; Kiriya, D.; Lien, D. H.; Ager III, J. W.; Wallace, R. M.; Javey, A. Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides. Nano Lett. 2016, 16, 2786-2791.
[31]
Moody, G.; Kavir Dass, C.; Hao, K.; Chen, C. H.; Li, L. J.; Singh, A.; Tran, K.; Clark, G.; Xu, X. D.; Berghäuser, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015, 6, 8315.
[32]
Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.
[33]
Museur, L.; Anglos, D.; Petitet, J. P.; Michel, J. P.; Kanaev, A. V. Photoluminescence of hexagonal boron nitride: Effect of surface oxidation under UV-laser irradiation. J. Lumin. 2007, 127, 595-600.
[34]
Berzina, B.; Korsaks, V.; Trinkler, L.; Sarakovskis, A.; Grube, J.; Bellucci, S. Defect-induced blue luminescence of hexagonal boron nitride. Diamond Relat. Mater. 2016, 68, 131-137.
[35]
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.,Jr; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.
[36]
Rosenberger, M. R.; Chuang, H. J.; McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T. Nano-“Squeegee” for the creation of clean 2D material interfaces. ACS Appl. Mater. Interfaces 2018, 10, 10379-10387.
[37]
Butun, S.; Tongay, S.; Aydin, K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett. 2015, 15, 2700-2704.
[38]
Bischak, C. G.; Wai, R. B.; Cherqui, C.; Busche, J. A.; Quillin, S. C.; Hetherington, C. L.; Wang, Z.; Aiello, C. D.; Schlom, D. G.; Aloni, S. et al. Noninvasive cathodoluminescence-activated nanoimaging of dynamic processes in liquids. ACS Nano 2017, 11, 10583-10590.
[39]
Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.
[40]
Zan, R.; Ramasse, Q. M.; Jalil, R.; Georgiou, T.; Bangert, U.; Novoselov, K. S. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 2013, 7, 10167-10174.
[41]
Kotakoski, J.; Jin, C. H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404.
File
12274_2019_2601_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2019
Revised: 02 December 2019
Accepted: 06 December 2019
Published: 17 January 2020
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work was supported by the Singapore-MIT Alliance for Research and Technology and the National Research Foundation, Prime Minister’s Office, Singapore. The authors acknowledge helpful discussions with Yuan Cao and Kha Tran. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Return