Journal Home > Volume 13 , Issue 1

Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions, but it needs efficient catalysts for the N2 reduction reaction (NRR). Here, we report that FeOOH quantum dots decorated graphene sheet acts as a superior catalyst toward enhanced electrocatalytic N2 reduction to NH3 under ambient conditions. In 0.1 M LiClO4, this hybrid attains a large NH3 yield rate and a high Faradaic efficiency of 27.3 μg·h-1·mg-1cat. and 14.6% at -0.4 V vs. reversible hydrogen electrode, respectively, rivalling the current efficiency of all Fe-based NRR electrocatalysts in aqueous media. It also shows strong durability during the electrolytic process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction

Show Author's information Xiaojuan Zhu1,2,§Jinxiu Zhao1,§Lei Ji1Tongwei Wu1Ting Wang1Shuyan Gao3Abdulmohsen Ali Alshehri4Khalid Ahmed Alzahrani4Yonglan Luo2Yimo Xiang5Baozhan Zheng6( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
No. 12 Middle School, Chengdu 610041, China
College of Chemistry, Sichuan University, Chengdu 610064, China

§ Xiaojuan Zhu and Jinxiu Zhao contributed equally to this work.

Abstract

Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions, but it needs efficient catalysts for the N2 reduction reaction (NRR). Here, we report that FeOOH quantum dots decorated graphene sheet acts as a superior catalyst toward enhanced electrocatalytic N2 reduction to NH3 under ambient conditions. In 0.1 M LiClO4, this hybrid attains a large NH3 yield rate and a high Faradaic efficiency of 27.3 μg·h-1·mg-1cat. and 14.6% at -0.4 V vs. reversible hydrogen electrode, respectively, rivalling the current efficiency of all Fe-based NRR electrocatalysts in aqueous media. It also shows strong durability during the electrolytic process.

Keywords: N2 reduction reaction, NH3 electrosynthesis, ambient conditions, FeOOH quantum dots decorated graphene sheet

References(50)

[1]
Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293-296.
[2]
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004-2008.
[3]
Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the World. Nat. Geosci. 2008, 1, 636-639.
[4]
Vegge, T.; Sørensen, R. Z.; Klerke, A.; Hummelshøj, J. S.; Johannessen, T.; Nørskov, J. K.; Christensen, C. H. Indirect hydrogen storage in metal ammines. In Solid-State Hydrogen Storage; Walker, G., Ed.; Woodhead Publishing: Cambridge, 2008; pp 533-564.
DOI
[5]
Ertl, G. Elementary steps in ammonia synthesis. In Catalytic Ammonia Synthesis: Fundamentals and Practice; Jennings, J. R., Ed.; Plenum: New York, 1991.
DOI
[6]
Dybkjaer, I. Ammonia production processes. In Ammonia: Catalysis and Manufacture; Nielsen, A., Ed.; Springer: Berlin Heidelberg, 1995; pp 199-308.
DOI
[7]
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45-56.
[8]
Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57-68.
[9]
Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730-1750.
[10]
Zhao, R. B.; Xie, H. T.; Chang, L.; Zhang, X. X.; Zhu, X. J.; Tong, X.; Wang, T.; Luo, Y. L.; Wei, P. P.; Wang, Z. M. et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem 2019, 1, 100011.
[11]
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664-9672.
[12]
Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[13]
Xie, H. T.; Geng, X.; Zhu, X. J.; Luo, Y. L.; Chang, L.; Niu, X. B.; Shi, X. F.; Asiri, A. M.; Gao, S. Y.; Wang, Z. M. et al. PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 24760-24764.
[14]
Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A 2019, 7, 21674-21677.
[15]
Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 Cycle. Adv. Mater. 2017, 29, 1604799.
[16]
Huang, L. S.; Wu, J. W.; Han, P.; Al-Enizi, A. M.; Almutairi, T. M.; Zhang, L. J.; Zheng, G. F. NbO2 electrocatalyst toward 32% Faradaic efficiency for N2 fixation. Small Methods 2019, 3, 1800386.
[17]
Huang, H.; Gong, F.; Wang, Y.; Wang, H. B.; Wu, X. F.; Lu, W. B.; Zhao, R. B.; Chen, H. Y.; Shi, X. F.; Asiri, A. M. et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Res. 2019, 12, 1093-1098.
[18]
Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun. 2019, 55, 2952-2955.
[19]
Zhang, L.; Xie, X. Y.; Wang, H. B.; Ji, L.; Zhang, Y.; Chen, H. Y.; Li, T. S.; Luo, Y. L.; Cui, G. L.; Sun, X. P. Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies. Chem. Commun. 2019, 55, 4627-4630.
[20]
Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.
[21]
Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073-6076.
[22]
Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449-18453.
[23]
Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855-12859.
[24]
Buscagan, T. M.; Oyala, P. H.; Peters, J. C. N2-to-NH3 conversion by a triphos-iron catalyst and enhanced turnover under photolysis. Angew. Chem., Int. Ed. 2017, 56, 6921.
[25]
Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor. ACS Sustainable Chem. Eng. 2017, 5, 7393-7400.
[26]
Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10986-10995.
[27]
Cui, X. Y.; Tang, C.; Liu, X. M.; Wang, C.; Ma, W. J.; Zhang, Q. Highly-selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem.—Eur. J. 2018, 24, 18494-18501.
[28]
Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386-14389.
[29]
Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312-9319.
[30]
Xiang, X. J.; Wang, Z.; Shi, X. F.; Fan, M. K.; Sun, X. P. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods. ChemCatChem 2018, 10, 4530-4535.
[31]
Suryanto, B. H. R.; Kang, C. S. M.; Wang, D. B.; Xiao, C. L.; Zhou, F. L.; Azofra, L. M.; Cavallo, L.; Zhang, X. Y.; MacFarlane, D. R. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 2018, 3, 1219-1224.
[32]
Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699-2703.
[33]
Zhang, M. β-FeOOH nanorods enriched with bulk chloride as lithium-ion battery cathodes. J. Alloys Compd. 2015, 648, 134-138.
[34]
Jung, J.; Song, K.; Bae, D. R.; Lee, S. W.; Lee, G.; Kang, Y. M. β-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low overpotential for lithium-air batteries. Nanoscale 2013, 5, 11845-11849.
[35]
Xiao, F.; Li, W. T.; Fang, L. P.; Wang, D. S. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J. Hazard. Mater. 2016, 308, 11-20.
[36]
Xiong, Y. J.; Xie, Y.; Chen, S. W.; Li, Z. Q. Fabrication of self-supported patterns of aligned β-FeOOH nanowires by a low-temperature solution reaction. Chem.—Eur. J. 2003, 9, 4991-4996.
[37]
Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332-11335.
[38]
Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun. 2019, 55, 3987-3990.
[39]
Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 2016, 26, 919-930.
[40]
Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843-2850.
[41]
Kuang, L. Y.; Liu, Y. Y.; Fu, D. D.; Zhao, Y. P. FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism. J. Colloid Interface Sci. 2017, 490, 259-269.
[42]
Hummers Jr., W. S.; Offeman, R. E. Preparation of graphictic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
[43]
Zhu, D.; Zhang, L. H.; Ruthe, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.
[44]
Watt, G. W.; Chrisp, J. D. Spectrophotometric method for the determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.
[45]
Carvalho, A. P.; Meireles, L. A.; Malcata, F. X. Rapid spectrophotometric determination of nitrates and nitrites in marine aqueous culture media. Analusis 1998, 26, 347-351.
[46]
Abdel-Samad, H.; Watson, P. R. An XPS study of the adsorption of chromate on goethite (a-FeOOH). Appl. Surf. Sci. 1997, 108, 371-377.
[47]
Mikosch, H.; Uzunova, E. L.; Nikolov, G. St. Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: A DFT study. J. Phys. Chem. B 2005, 109, 11119-11125.
[48]
Papai, I.; Goursot, A.; Fajula, F.; Plee, D.; Weber, J. Modeling of N2 and O2 adsorption in zeolites. J. Phys. Chem. 1995, 99, 12925-12932.
[49]
Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
[50]
Ren, X.; Zhao, J. X. ; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2019, 5, 116-121.
File
12274_2019_2600_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2019
Revised: 02 December 2019
Accepted: 07 December 2019
Published: 20 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Return