Journal Home > Volume 13 , Issue 1

Ultrasmall silver nanoclusters (Ag NCs) with rich surface chemistry and good biocompatibility are promising in antibacterial application, however, further development of Ag NCs for practical settings has been constrained by their relatively weak antibacterial activity. Using the nutritionally-rich medium for bacteria (e.g., Luria-Bertani (LB) medium) to coat active Ag NCs could further improve their antibacterial activity. Here, we provide a delicate design of a highly efficient Ag NCs@ELB antibacterial agent (ELB denotes the extract of LB medium) by anchoring Ag NCs inside the ELB species via light irradiation. The as-designed Ag NCs with bacterium-favored nutrients on the surface can be easily swallowed by the bacteria, boosting the production of the intracellular reactive oxygen species (ROS, about 2-fold of that in the pristine Ag NCs). Subsequently, a higher concentration of ROS generated in Ag NCs@ELB leads to enhanced antibacterial activity, and enables to reduce the colony forming units (CFU) of both gram-positive and gram-negative bacteria with 3-4 orders of magnitude less than that treated with the pristine Ag NCs. In addition, the Ag NCs@ELB also shows good biocompatibility. This study suggests that surface engineering of active species (e.g., Ag NCs) with nutritionally-rich medium of the bacteria is an efficient way to improve their antibacterial activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity

Show Author's information Ziping Wang1,2Yushuang Fang1Xianfeng Zhou3Zhibo Li3Haiguang Zhu1Fanglin Du1Xun Yuan1 ( )Qiaofeng Yao4( )Jianping Xie4( )
Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Weifang University of Science and Technology, Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang 262700, China
Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore

Abstract

Ultrasmall silver nanoclusters (Ag NCs) with rich surface chemistry and good biocompatibility are promising in antibacterial application, however, further development of Ag NCs for practical settings has been constrained by their relatively weak antibacterial activity. Using the nutritionally-rich medium for bacteria (e.g., Luria-Bertani (LB) medium) to coat active Ag NCs could further improve their antibacterial activity. Here, we provide a delicate design of a highly efficient Ag NCs@ELB antibacterial agent (ELB denotes the extract of LB medium) by anchoring Ag NCs inside the ELB species via light irradiation. The as-designed Ag NCs with bacterium-favored nutrients on the surface can be easily swallowed by the bacteria, boosting the production of the intracellular reactive oxygen species (ROS, about 2-fold of that in the pristine Ag NCs). Subsequently, a higher concentration of ROS generated in Ag NCs@ELB leads to enhanced antibacterial activity, and enables to reduce the colony forming units (CFU) of both gram-positive and gram-negative bacteria with 3-4 orders of magnitude less than that treated with the pristine Ag NCs. In addition, the Ag NCs@ELB also shows good biocompatibility. This study suggests that surface engineering of active species (e.g., Ag NCs) with nutritionally-rich medium of the bacteria is an efficient way to improve their antibacterial activity.

Keywords: reactive oxygen species, Ag nanoclusters, Luria-Bertani (LB) broth, light irradiation, antibacterial agent

References(58)

[1]
Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1-17.
[2]
Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636-1653.
[3]
Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271-4275.
[4]
Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339-354.
[5]
Dutta, P.; Wang, B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 2019, 383, 1-29.
[6]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856-8874.
[7]
Lansdown, A. B. G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010, 2010, 910686.
[8]
Javani, S.; Lorca, R.; Latorre, A.; Flors, C.; Cortajarena, A. L.; Somoza, Á. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl. Mater. Interfaces 2016, 8, 10147-10154.
[9]
Sukhorukova, I. V.; Sheveyko, A. N.; Shvindina, N. V.; Denisenko, E. A.; Ignatov, S. G.; Shtansky, D. V. Approaches for controlled Ag+ ion release: Influence of surface topography, roughness, and bactericide content. ACS Appl. Mater. Interfaces 2017, 9, 4259-4271.
[10]
Liu, J. Y.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903-6913.
[11]
Du, W. J.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Ag50(Dppm)6(SR)30 and its homologue AuxAg50-x(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc. 2017, 139, 1618-1624.
[12]
Yang, H. Y.; Wang, Y.; Chen, X.; Zhao, X. J.; Gu, L.; Huang, H. Q.; Yan, J. Z.; Xu, C. F.; Li, G.; Wu, J. C. et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 2016, 7, 12809.
[13]
Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069-1076.
[14]
Kim, K.; Hirata, K.; Nakamura, K.; Kitazawa, H.; Hayashi, S.; Koyasu, K.; Tsukuda, T. Elucidating the doping effect on the electronic structure of thiolate-protected silver superatoms by photoelectron spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 11637-11641.
[15]
Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun. 2018, 9, 744.
[16]
AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970-11975.
[17]
Wang, Z.; Su, H. F.; Tan, Y. Z.; Schein, S.; Lin, S. C.; Liu, W.; Wang, S. A.; Wang, W. G.; Tung, C. H.; Sun, D. et al. Assembly of silver trigons into a buckyball-like Ag180 nanocage. Proc. Natl. Acad. Sci. USA 2017, 114, 12132-12137.
[18]
Petty, J. T.; Sergev, O. O.; Ganguly, M.; Rankine, I. J.; Chevrier, D. M.; Zhang, P. A segregated, partially oxidized, and compact Ag10 cluster within an encapsulating DNA host. J. Am. Chem. Soc. 2016, 138, 3469-3477.
[19]
Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 2016, 320-321, 238-250.
[20]
Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114-3124.
[21]
Li, S.; Du, X. S.; Li, B.; Wang, J. Y.; Li, G. P.; Gao, G. G.; Zang, S. Q. Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality. J. Am. Chem. Soc. 2018, 140, 594-597.
[22]
Gan, Z. B.; Lin, Y. J.; Luo, L.; Han, G. M.; Liu, W.; Liu, Z. J.; Yao, C. H.; Weng, L. H.; Liao, L. W.; Chen, J. S. et al. Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel. Angew. Chem., Int. Ed. 2016, 55, 11567-11571.
[23]
Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci. Adv. 2018, 4, eaat7259.
[24]
Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: The dipyridylamido Au328+ nanocluster. Angew. Chem., Int. Ed. 2019, 58, 5906-5909.
[25]
Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.
[26]
Wang, T. Y.; Wang, D. C.; Padelford, J. W.; Jiang, J.; Wang, G. L. Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid Au nanoclusters. J. Am. Chem. Soc. 2016, 138, 6380-6383.
[27]
Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3- (n = 1-9). ACS Nano 2018, 12, 2415-2425.
[28]
Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117.
[29]
Sugiuchi, M.; Maeba, J.; Okubo, N.; Iwamura, M.; Nozaki, K.; Konishi, K. Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 2017, 139, 17731-17734.
[30]
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084-3093.
[31]
Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033-1039.
[32]
Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964-9968.
[33]
Chen, Y. S.; Kamat, P. V. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 2014, 136, 6075-6082.
[34]
Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900-905.
[35]
Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.
[36]
Li, J. G.; Zhao, T. T.; Chen, T. K.; Liu, Y. B.; Ong, C. N.; Xie, J. P. Engineering noble metal nanomaterials for environmental applications. Nanoscale 2015, 7, 7502-7519.
[37]
Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le Guével, X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591-2599.
[38]
Chen, Y.; Montana, D. M.; Wei, H.; Cordero, J. M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O. T.; Bawendi, M. G. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 2017, 17, 6330-6334.
[39]
Du, B. J.; Jiang, X. Y.; Das, A.; Zhou, Q. H.; Yu, M. X.; Jin, R. C.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096-1102.
[40]
Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301-307.
[41]
Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. P. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39.
[42]
Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800-2808.
[43]
Zheng, K. Y.; Setyawati, M. I.; Lim, T. P.; Leong, D. T.; Xie, J. P. Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano 2016, 10, 7934-7942.
[44]
Chakraborty, I.; Udayabhaskararao, T.; Deepesh, G. K.; Pradeep, T. Sunlight mediated synthesis and antibacterial properties of monolayer protected silver clusters. J. Mater. Chem. B 2013, 1, 4059-4064.
[45]
Jin, J. C.; Wu, X. J.; Xu, J.; Wang, B. B.; Jiang, F. L.; Liu, Y. Ultrasmall silver nanoclusters: Highly efficient antibacterial activity and their mechanisms. Biomater. Sci. 2017, 5, 247-257.
[46]
Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636-8663.
[47]
Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143-5155.
[48]
Mao, X. Y.; Cheng, R. Y.; Zhang, H. B.; Bae, J.; Cheng, L. Y.; Zhang, L.; Deng, L. F.; Cui, W. G.; Zhang, Y. G.; Santos, H. A. et al. Self-healing and injectable hydrogel for matching skin flap regeneration. Adv. Sci. 2019, 6, 1801555.
[49]
Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503.
[50]
Yuan, X.; Tay, Y.; Dou, X. Y.; Luo, Z. T.; Leong, D. T.; Xie, J. P. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913-1919.
[51]
Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901-1903.
[52]
Liu, Y. D.; Goebl, J.; Yin, Y. D. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610-2653.
[53]
Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.—Eur. J. 2005, 11, 454-463.
[54]
Demers, L. M.; Östblom, M.; Zhang, H.; Jang, N. H.; Liedberg, B.; Mirkin, C. A. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 2002, 124, 11248-11249.
[55]
Yuan, X. H.; Luo, K.; Zhang, K. Q.; He, J. L.; Zhao, Y. C.; Yu, D. L. Combinatorial vibration-mode assignment for the FTIR spectrum of crystalline melamine: A strategic approach toward theoretical IR vibrational calculations of triazine-based compounds. J. Phys. Chem. A 2016, 120, 7427-7433.
[56]
Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; Xie, J. P. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz. 2017, 4, 817-831.
[57]
Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338-1348.
[58]
Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.
File
12274_2019_2598_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2019
Revised: 01 December 2019
Accepted: 05 December 2019
Published: 02 January 2020
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work is supported by the Taishan Scholar Foundation (No. tsqn201812074), the Young Talents Joint Fund of Shandong Province (No. ZR2019YQ07), the Original Innovation Project of Qingdao City (No. 18-2-2-58-jch), the Open Fund of Shandong Key Laboratory of Biochemical Analysis (No. QUSTHX201901), and the Ministry of Education, Singapore, Academic Research Grant R-279-000-538-114.

Return