AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes

Young-Geun Park1,2,§Eunkyung Cha1,2,§Hyeon Seok An1,2Kyoung-Pil Lee3Myoung Hoon Song4Hong Kyun Kim3( )Jang-Ung Park1,2( )
Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

§ Young-Geun Park and Eunkyung Cha contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Light-mediated therapeutics have attracted considerable attention as a method for the treatment of ophthalmologic diseases, such as age-related macular degeneration, because of their non-invasiveness and the effectiveness to ameliorate the oxidative stress of retinal cells. However, the current phototherapeutic devices are opaque, bulky, and tethered forms, so they are not feasible for use in continuous treatment during the patient’s daily life. Herein, we report wireless, wearable phototherapeutic devices with red light-emitting diodes for continuous treatments. Red light-emitting diodes were formed to be conformal to three-dimensional surfaces of glasses and contact lenses. Furthermore, fabricated light-emitting diodes had either transparency or a miniaturized size so that the user’s view is not obstructed. Also, these devices were operated wirelessly with control of the light intensity. In addition, in-vitro and in-vivo tests using human retinal epithelial cells and a live rabbit demonstrated the effectiveness and reliable operation as phototherapeutic devices.

Electronic Supplementary Material

Download File(s)
12274_2019_2595_MOESM4_ESM.pdf (1.8 MB)

References

[1]
Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z. Q.; Banks, A.; Sheng, X.; Liu, Y. H.; Lee, J. W.; Jang, K. I. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418.
[2]
Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W. F.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057-1065.
[3]
Kim, J.; Kim, M.; Lee, M. S.; Kim, K.; Ji, S.; Kim, Y. T.; Park, J.; Na, K.; Bae, K. H.; Kim, H. K. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997.
[4]
Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.
[5]
Xu, J. W.; Xue, Y. Y.; Hu, G. Y.; Lin, T. Y.; Gou, J. X.; Yin, T.; He, H. B.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release 2018, 281, 97-118.
[6]
Ferlauto, L.; Leccardi, M. J. I. A.; Chenais, N. A. L.; Gilliéron, S. C. A.; Vagni, P.; Bevilacqua, M.; Wolfensberger, T. J.; Sivula, K.; Ghezzi, D. Design and validation of a foldable and photovoltaic wide-field Epiretinal prosthesis. Nat. Commun. 2018, 9, 992.
[7]
Flores, T.; Huang, T.; Bhuckory, M.; Ho, E.; Chen, Z. J.; Dalal, R.; Galambos, L.; Kamins, T.; Mathieson, K.; Palanker, D. Honeycomb-shaped electro-neural interface enables cellular-scale pixels in subretinal prosthesis. Sci. Rep. 2019, 9, 10657.
[8]
Ledesma, H. A.; Li, X. J.; Carvalho-de-Souza, J. L.; Wei, W.; Bezanilla, F.; Tian, B. Z. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 2019, 14, 645-657.
[9]
Luo, Z. Q.; Weiss, D. E.; Liu, Q. Y.; Tian, B. Z. Biomimetic approaches toward smart bio-hybrid systems. Nano Res. 2018, 11, 3009-3030.
[10]
Fu, R. X.; Luo, W. H.; Nazempour, R.; Tan, D. X.; Ding, H.; Zhang, K. Y.; Yin, L.; Guan, J. S.; Sheng, X. Implantable and biodegradable poly(L-lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater. 2018, 6, 1700941.
[11]
Lee, H. E.; Choi, J. H.; Lee, S. H.; Jeong, M.; Shin, J. H.; Joe, D. J.; Kim, D. H.; Kim, C. W.; Park, J. H.; Lee, J. H. et al. Monolithic flexible vertical gan light-emitting diodes for a transparent wireless brain optical stimulator. Adv. Mater. 2018, 30, 1800649.
[12]
Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. S.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 2018, 1, 652-660.
[13]
Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for nir light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689-6695.
[14]
Greco, M.; Guida, G.; Perlino, E.; Marra, E.; Quagliariello, E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem. Biophys. Res. Commun. 1989, 163, 1428-1434.
[15]
Karu, T. I.; Kolyakov, S. F. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 2005, 23, 355-361.
[16]
Rojas, J. C.; Gonzalez-Lima, F. Low-level light therapy of the eye and brain. Eye Brain 2011, 3, 49-67.
[17]
Mehta, S. Age-related macular degeneration. Prim. Care: Clin. Office Pract. 2015, 42, 377-391.
[18]
Ao, J.; Wood, J. P. M.; Chidlow, G.; Gillies, M. C.; Casson, R. J. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin. Exp. Ophthalmol. 2018, 46, 670-686.
[19]
Ferraresi, C.; Parizotto, N. A.; de Sousa, M. V. P.; Kaippert, B.; Huang, Y. Y.; Koiso, T.; Bagnato, V. S.; Hamblin, M. R. Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J. Biophoton. 2015, 8, 740-754.
[20]
Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-1607.
[21]
White, M. S.; Kaltenbrunner, M.; Głowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 2013, 7, 811-816.
[22]
An, H. S.; Park, Y. G.; Kim, K.; Nam, Y. S.; Song, M. H.; Park, J. U. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci. 2019, 6, 1901603.
[23]
An, B. W.; Gwak, E. J.; Kim, K.; Kim, Y. C.; Jang, J.; Kim, J. Y.; Park, J. U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 2016, 16, 471-478.
[24]
Rutar, M.; Natoli, R.; Albarracin, R.; Valter, K.; Provis, J. 670-nm light treatment reduces complement propagation following retinal degeneration. J. Neuroinflammation 2012, 9, 257.
[25]
Eells, J. T.; Wong-Riley, M. T. T.; VerHoeve, J.; Henry, M.; Buchman, E. V.; Kane, M. P.; Gould, L. J.; Das, R.; Jett, M.; Hodgson, B. D. et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 2004, 4, 559-567.
[26]
Silveira, P. C. L.; Ferreira, K. B.; da Rocha, F. R.; Pieri, B. L. S.; Pedroso, G. S.; de Souza, C. T.; Nesi, R. T.; Pinho, R. A. Effect of low-power laser (LPL) and light-emitting diode (LED) on inflammatory response in burn wound healing. Inflammation 2016, 39, 1395-1404.
[27]
Qu, C.; Cao, W.; Fan, Y. C.; Lin, Y. Near-infrared light protect the photoreceptor from light-induced damage in rats. In Retinal Degenerative Diseases; Anderson, R. E.; Hollyfield, J. G.; LaVail, M. M., Eds.; Springer: New York, 2010; pp 365-374.
[28]
Fuma, S.; Murase, H.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells. Mol. Vis. 2015, 21, 883-892.
[29]
Begum, R.; Powner, M. B.; Hudson, N.; Hogg, C.; Jeffery, G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS One 2013, 8, e57828.
[30]
Albarracin, R.; Eells, J.; Valter, K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 2011, 52, 3582-3592.
[31]
Sparrow, J. R.; Parish, C. A.; Hashimoto, M.; Nakanishi, K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest. Ophthalmol. Vis. Sci. 1999, 40, 2988-2995.
[32]
Bergmann, M.; Schütt, F.; Holz, F. G.; Kopitz, J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J. 2004, 18, 562-564.
[33]
Finnemann, S. C.; Leung, L. W.; Rodriguez-Boulan, E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 2002, 99, 3842-3847.
[34]
Sparrow, J. R.; Zhou, J. L.; Ben-Shabat, S.; Vollmer, H.; Itagaki, Y.; Nakanishi, K. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-Laden RPE. Invest. Ophthalmol. Vis. Sci. 2002, 43, 1222-1227.
[35]
Mehta, J. S.; Futter, C. E.; Sandeman, S. R.; Faragher, R. G. A. F.; Hing, K. A.; Tanner, K. E.; Allan, B. D. S. Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. Br. J. Ophthalmol. 2005, 89, 1356-1362.
[36]
Chen, G. Z.; Chan, I. S.; Lam, D. C. C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens. Actuators A: Phys. 2013, 203, 112-118.
[37]
Salvatore, G. A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 2014, 5, 2982.
[38]
Rim, Y. S.; Bae, S. H.; Chen, H. J.; Yang, J. L.; Kim, J.; Andrews, A. M.; Weiss, P. S.; Yang, Y.; Tseng, H. R. Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 2015, 9, 12174-12181.
[39]
Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. W. et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814-2821.
[40]
Jang, J.; Hyun, B. G.; Ji, S.; Cho, E.; An, B. W.; Cheong, W. H.; Park, J. U. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater. 2017, 9, e432.
[41]
Park, J. U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; Mukhopadhyay, D. K.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G. et al. High-resolution electrohydrodynamic jet printing. Nat. Mater. 2007, 6, 782-789.
Nano Research
Pages 1347-1353
Cite this article:
Park Y-G, Cha E, Seok An H, et al. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Research, 2020, 13(5): 1347-1353. https://doi.org/10.1007/s12274-019-2595-1
Topics:

1040

Views

37

Crossref

N/A

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 11 August 2019
Revised: 16 October 2019
Accepted: 06 November 2019
Published: 17 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return