Journal Home > Volume 13 , Issue 1

Vulnerable atherosclerotic plaques are responsible for most cardiovascular diseases (CVDs). Folate receptor (FR) positive activated macrophages were thought to be a prominent component in the development of vulnerable plaque. The objective of this study is to develop folate conjugated two-dimensional (2D) Pd@Au nanomaterials (Pd@Au-PEG-FA) for targeted multimodal imaging of the FRs in advanced atherosclerotic plaques. Pharmacokinetic and imaging studies (single photon emission computed tomography (SPECT), computed tomography (CT) and photoacoustic (PA) imaging) were performed to confirm the prolonged blood half-life and enrichment of radioactivity in atherosclerotic plaques. Strong signals were detected in vivo with SPECT, CT and PA imaging in heavy atherosclerotic plaques, which were significantly higher than those of the normal aortas after injection of Pd@Au-PEG-FA. Blocking studies with preinjection of excess folic acid (FA) could effectively reduce the targeting ability of Pd@Au-PEG-FA in atherosclerotic plaques, further demonstrating the specific binding of Pd@Au-PEG-FA for plaque lesions. Histopathological characterization revealed that the signal of probe was in accordance with the high-risk plaques. In summary, the Pd@Au-PEG-FA has favorable pharmacokinetic properties and provides a valuable approach for detecting high-risk plaques in the presence of FRs in atherosclerotic plaques.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Molecular imaging of advanced atherosclerotic plaques with folate receptor-targeted 2D nanoprobes

Show Author's information Zhide Guo1,§Liu Yang2,§Mei Chen3,4,§Xuejun Wen1Huanhuan Liu1Jingchao Li1Duo Xu1Yuanyuan An2Changrong Shi1Jindian Li1Xinhui Su5Zijing Li1Ting Liu1Rongqiang Zhuang1Nanfeng Zheng4( )Haibo Zhu2( )Xianzhong Zhang1( )
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
The State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen 361005, China
Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China

§ Zhide Guo, Liu Yang, and Mei Chen contributed equally to this work.

Abstract

Vulnerable atherosclerotic plaques are responsible for most cardiovascular diseases (CVDs). Folate receptor (FR) positive activated macrophages were thought to be a prominent component in the development of vulnerable plaque. The objective of this study is to develop folate conjugated two-dimensional (2D) Pd@Au nanomaterials (Pd@Au-PEG-FA) for targeted multimodal imaging of the FRs in advanced atherosclerotic plaques. Pharmacokinetic and imaging studies (single photon emission computed tomography (SPECT), computed tomography (CT) and photoacoustic (PA) imaging) were performed to confirm the prolonged blood half-life and enrichment of radioactivity in atherosclerotic plaques. Strong signals were detected in vivo with SPECT, CT and PA imaging in heavy atherosclerotic plaques, which were significantly higher than those of the normal aortas after injection of Pd@Au-PEG-FA. Blocking studies with preinjection of excess folic acid (FA) could effectively reduce the targeting ability of Pd@Au-PEG-FA in atherosclerotic plaques, further demonstrating the specific binding of Pd@Au-PEG-FA for plaque lesions. Histopathological characterization revealed that the signal of probe was in accordance with the high-risk plaques. In summary, the Pd@Au-PEG-FA has favorable pharmacokinetic properties and provides a valuable approach for detecting high-risk plaques in the presence of FRs in atherosclerotic plaques.

Keywords: two-dimensional (2D) material, atherosclerosis, folate receptor, multifunctional imaging, activated macrophages

References(38)

[1]
Williams, J. W.; Giannarelli, C.; Rahman, A.; Randolph, G. J.; Kovacic, J. C. Macrophage biology, classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series (part 1). J. Am. Coll. Cardiol. 2018, 72, 2166-2180.
[2]
Schwalm, J. D.; McKee, M.; Huffman, M. D.; Yusuf, S. Resource effective strategies to prevent and treat cardiovascular disease. Circulation 2016, 133, 742-755.
[3]
Reimann, C.; Brangsch, J.; Colletini, F.; Walter, T.; Hamm, B.; Botnar, R. M.; Makowski, M. R. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv. Drug. Deliver. Rev. 2017, 113, 49-60.
[4]
Lewis, D. R.; Petersen, L. K.; York, A. W.; Ahuja, S.; Chae, H.; Joseph, L. B.; Rahimi, S.; Uhrich, K. E.; Haser, P. B.; Moghe, P. V. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovasc. Res. 2016, 109, 283-293.
[5]
Vancraeynest, D.; Pasquet, A.; Roelants, V.; Gerber, B. L.; Vanoverschelde, J. L. J. Imaging the vulnerable plaque. J. Am. Coll. Cardiol. 2011, 57, 1961-1979.
[6]
Fiz, F.; Morbelli, S.; Piccardo, A.; Bauckneht, M.; Ferrarazzo, G.; Pestarino, E.; Cabria, M.; Democrito, A.; Riondato, M.; Villavecchia, G. et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: Inverse correlation between calcification density and mineral metabolic activity. J. Nucl. Med. 2015, 56, 1019-1023.
[7]
Tahara, N.; Mukherjee, J.; de Haas, H. J.; Petrov, A. D.; Tawakol, A.; Haider, N.; Tahara, A.; Constantinescu, C. C.; Zhou, J.; Boersma, H. H. et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 2014, 20, 215-219.
[8]
Ayala-López, W.; Xia, W.; Varghese, B.; Low, P. S. Imaging of atherosclerosis in apoliprotein e knockout mice: Targeting of a folate-conjugated radiopharmaceutical to activated macrophages. J. Nucl. Med. 2010, 51, 768-774.
[9]
Joseph, P.; Tawakol, A. Imaging atherosclerosis with positron emission tomography. Eur. Heart. J. 2016, 37, 2974-2980.
[10]
Tarkin, J. M.; Joshi, F. R.; Evans, N. R.; Chowdhury, M. M.; Figg, N. L.; Shah, A. V.; Starks, L. T.; Martin-Garrido, A.; Manavaki, R.; Yu, E. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 2017, 69, 1774-1791.
[11]
Hyafil, F.; Pelisek, J.; Laitinen, I.; Schottelius, M.; Mohring, M.; Döring, Y.; van der Vorst, E. P. C.; Kallmayer, M.; Steiger, K.; Poschenrieder, A. et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET. J. Nucl. Med. 2017, 58, 499-506.
[12]
Beer, A. J.; Pelisek, J.; Heider, P.; Saraste, A.; Reeps, C.; Metz, S.; Seidl, S.; Kessler, H.; Wester, H. J.; Eckstein, H. H. et al. PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc. Imaging 2014, 7, 178-187.
[13]
Keliher, E. J.; Ye, Y. X.; Wojtkiewicz, G. R.; Aguirre, A. D.; Tricot, B.; Senders, M. L.; Groenen, H.; Fay, F.; Perez-Medina, C.; Calcagno, C. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 2017, 8, 14064.
[14]
Kelderhouse, L. E.; Mahalingam, S.; Low, P. S. Predicting response to therapy for autoimmune and inflammatory diseases using a folate receptor-targeted near-infrared fluorescent imaging agent. Mol. Imaging Biol. 2016, 18, 201-208.
[15]
Jager, N. A.; Westra, J.; Golestani, R.; van Dam, G. M.; Low, P. S.; Tio, R. A.; Slart, R. H. J. A.; Boersma, H. H.; Bijl, M.; Zeebregts, C. J. Folate receptor-β imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque. J. Nucl. Med. 2014, 55, 1945-1951.
[16]
Xia, W.; Hilgenbrink, A. R.; Matteson, E. L.; Lockwood, M. B.; Cheng, J. X.; Low, P. S. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 2009, 113, 438-446.
[17]
Liang, M. M.; Tan, H.; Zhou, J.; Wang, T.; Duan, D. M.; Fan, K. L.; He, J. Y.; Cheng, D. F.; Shi, H. C.; Choi, H. S. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 2018, 12, 9300-9308.
[18]
Bejarano, J.; Navarro-Marquez, M.; Morales-Zavala, F.; Morales, J. O.; Garcia-Carvajal, I.; Araya-Fuentes, E.; Flores, Y.; Verdejo, H. E.; Castro, P. F.; Lavandero, S. et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018, 8, 4710-4732.
[19]
Ma, S.; Motevalli, S. M.; Chen, J. W.; Xu, M. Q.; Wang, Y. B.; Feng, J.; Qiu, Y.; Han, D.; Fan, M. M.; Ding, M. L. et al. Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. Theranostics 2018, 8, 3693-3706.
[20]
Stendahl, J. C.; Sinusas, A. J. Nanoparticles for cardiovascular imaging and therapeutic delivery, part 2: Radiolabeled probes. J. Nucl. Med. 2015, 56, 1637-1641.
[21]
Qiao, R. R.; Qiao, H. Y.; Zhang, Y.; Wang, Y. B.; Chi, C. W.; Tian, J.; Zhang, L. F.; Cao, F.; Gao, M. Y. Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano 2017, 11, 1816-1825.
[22]
Li, X.; Wang, C.; Tan, H.; Cheng, L. L.; Liu, G. B.; Yang, Y.; Zhao, Y. Z.; Zhang, Y. Q.; Li, Y. L.; Zhang, C. F. et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 2016, 108, 71-80.
[23]
Chen, M.; Tang, S. H.; Guo, Z. D.; Wang, X. Y.; Mo, S. G.; Huang, X. Q.; Liu, G.; Zheng, N. F. Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater. 2014, 26, 8210-8216.
[24]
Chen, M.; Guo, Z. D.; Chen, Q. H.; Wei, J. P.; Li, J. C.; Shi, C. R.; Xu, D.; Zhou, D. W.; Zhang, X. Z.; Zheng, N. F. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy. Chem. Sci. 2018, 9, 4268-4274.
[25]
Guo, Z. D.; Chen, M.; Peng, C. Y.; Mo, S. G.; Shi, C. R.; Fu, G. F.; Wen, X. J.; Zhuang, R. Q.; Su, X. H.; Liu, T. et al. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials 2018, 179, 134-143.
[26]
Lüscher, T. F. Frontiers of interventional cardiology: Plaque imaging, thrombus load, and bifurcation lesions. Eur. Heart J. 2016, 37, 1861-1864.
[27]
Solomon, S. B.; Cornelis, F. Interventional molecular imaging. J. Nucl. Med. 2016, 57, 493-496.
[28]
Pavlin-Premrl, D.; Sharma, R.; Campbell, B. C. V.; Mocco, J.; Opie, N. L.; Oxley, T. J. Advanced imaging of intracranial atherosclerosis: Lessons from interventional cardiology. Front. Neurol. 2017, 8, 387.
[29]
Gao, W.; Sun, Y. H.; Cai, M.; Zhao, Y. J.; Cao, W. H.; Liu, Z. H.; Cui, G. W.; Tang, B. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat. Commun. 2018, 9, 231-240.
[30]
Libby, P.; Ridker, P. M.; Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317-325.
[31]
Qiao, H. Y.; Wang, Y. B.; Zhang, R. H.; Gao, Q. S.; Liang, X.; Gao, L.; Jiang, Z. H.; Qiao, R. R.; Han, D.; Zhang, Y. et al. MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe3O4 nanoparticles. Biomaterials 2017, 112, 336-345.
[32]
Guo, Z. D.; Gao, M. N.; Song, M. L.; Shi, C. R.; Zhang, P.; Xu, D.; You, L. Y.; Zhuang, R. Q.; Su, X. H.; Liu, T. et al. Synthesis and evaluation of 99mTc-labeled dimeric folic acid for FR-targeting. Molecules 2016, 21, 817.
[33]
Guo, Z. D.; You, L. Y.; Shi, C. R.; Song, M. L.; Gao, M. N.; Xu, D.; Peng, C. Y.; Zhuang, R. Q.; Liu, T.; Su, X. H. et al. Development of a new FR-targeting agent 99mTc-HYNFA with improved imaging contrast and comparison of multimerization and/or PEGylation strategies for radio-folate modification. Mol. Pharmaceutics 2017, 14, 3780-3788.
[34]
Müller, A.; Beck, K.; Rancic, Z.; Müller, C.; Fischer, C. R.; Betzel, T.; Kaufmann, P. A.; Schibli, R.; Krämer, S. D.; Ametamey, S. M. Imaging atherosclerotic plaque inflammation via folate receptor targeting using a novel 18F-folate radiotracer. Mol. Imaging 2014, 13, .
[35]
Winkel, L. C. J.; Groen, H. C.; van Thiel, B. S.; Müller, C.; van der Steen, A. F. W.; Wentzel, J. J.; de Jong, M.; van der Heiden, K. Folate receptor-targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: Can it distinguish vulnerable from stable atherosclerotic plaques? Mol. Imaging 2014, 13, .
[36]
Chen, H. J.; Jacobson, O.; Niu, G.; Weiss, I. D.; Kiesewetter, D. O.; Liu, Y.; Ma, Y.; Wu, H.; Chen, X. Y. Novel “add-on” molecule based on Evans Blue confers superior pharmacokinetics and transforms drugs to theranostic agents. J. Nucl. Med. 2017, 58, 590-597.
[37]
Chen, H. J.; Wang, G. H.; Lang, L. X.; Jacobson, O.; Kiesewetter, D. O.; Liu, Y.; Ma, Y.; Zhang, X. Z.; Wu, H.; Zhu, L. et al. Chemical conjugation of Evans Blue derivative: A strategy to develop long-acting therapeutics through albumin binding. Theranostics 2016, 6, 243-253.
[38]
Wen, X. J.; Shi, C. R.; Xu, D.; Zhang, P.; Li, Z. Z.; Li, J. D.; Su, X. H.; Zhuang, R. Q.; Liu, T.; Guo, Z. D. et al. Radioiodinated portable albumin binder as a versatile agent for in vivo imaging with single-photon emission computed tomography. Mol. Pharmaceutics 2019, 16, 816-824.
File
12274_2019_2592_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2019
Revised: 28 November 2019
Accepted: 29 November 2019
Published: 19 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This study was financially supported by the National Postdoctoral Program for Innovative Talents (No. BX201700142), Postdoctoral Science Foundation of China (No. 2018M630732), the National Natural Science Foundation of China (Nos. 81901805, 21906135, 81471707, 21705037, and 91539126), Hunan Provincial Natural Science Foundation of China (No. 2018JJ3092), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS 2016-I2M-1-009), and Drug Innovation Major Project (2018ZX09711001-003-011).

Return