Journal Home > Volume 13 , Issue 5

Anisotropy and inhomogeneity are ubiquitous in spark plasma sintered thermoelectric devices. However, the origin of inhomogeneity in thermoelectric nanocomposites has rarely been investigated so far. Herein, we systematically study the impact of inhomogeneity in spark plasma sintered bismuth antimony telluride (BiSbTe) thermoelectric nanocomposites fabricated from solution-synthesized nanoplates. The figure of merit can reach 1.18, which, however, can be overestimated to 1.88 without considering the inhomogeneity. Our study reveals that the inhomogeneity in thermoelectric properties is attributed to the non-uniformity of porosity, textures and elemental distribution from electron backscatter diffraction and energy-dispersive spectroscopy characterizations. This finding suggests that the optimization of bulk material homogeneity should also be actively pursued in any future thermoelectric material research.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites

Show Author's information Enzheng Shi1,2,§Shuang Cui3,4,§Nicholas Kempf5Qingfeng Xing2Thomas Chasapis6Huazhang Zhu1Zhe Li1Je-Hyeong Bahk7Jeffrey G. Snyder6Yanliang Zhang5Renkun Chen3Yue Wu1,2( )
Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
Ames Laboratory, Department of Energy, Iowa State University, Ames, IA 50011, USA
Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, CA 92093, USA
Buildings and Thermal Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

§Enzheng Shi and Shuang Cui contributed equally to this work.

Abstract

Anisotropy and inhomogeneity are ubiquitous in spark plasma sintered thermoelectric devices. However, the origin of inhomogeneity in thermoelectric nanocomposites has rarely been investigated so far. Herein, we systematically study the impact of inhomogeneity in spark plasma sintered bismuth antimony telluride (BiSbTe) thermoelectric nanocomposites fabricated from solution-synthesized nanoplates. The figure of merit can reach 1.18, which, however, can be overestimated to 1.88 without considering the inhomogeneity. Our study reveals that the inhomogeneity in thermoelectric properties is attributed to the non-uniformity of porosity, textures and elemental distribution from electron backscatter diffraction and energy-dispersive spectroscopy characterizations. This finding suggests that the optimization of bulk material homogeneity should also be actively pursued in any future thermoelectric material research.

Keywords: thermoelectrics, solution synthesis, bismuth antimony telluride, inhomogeneity

References(34)

[1]
Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-114.
[2]
Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414-418.
[3]
Korkosz, R. J.; Chasapis, T. C.; Lo, S. H.; Doak, J. W.; Kim, Y. J.; Wu, C. I.; Hatzikraniotis, E.; Hogan, T. P.; Seidman, D. N.; Wolverton, C. et al. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. J. Am. Chem. Soc. 2014, 136, 3225-3237.
[4]
Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141-144.
[5]
Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.
[6]
Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634-638.
[7]
Zhao, L. D.; Berardan, D.; Pei, Y. L.; Byl, C.; Pinsard-Gaudart, L.; Dragoe, N. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett. 2010, 97, 092118.
[8]
Liu, Y.; Zhao, L. D.; Liu, Y. C.; Lan, J. L.; Xu, W.; Li, F.; Zhang, B. P.; Berardan, D.; Dragoe, N.; Lin, Y. H. et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc. 2011, 133, 20112-20115.
[9]
Ren, G. K.; Wang, S. Y.; Zhu, Y. C.; Ventura, K. J.; Tan, X.; Xu, W.; Lin, Y. H.; Yang, J. H.; Nan, C. W. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling. Energy Environ. Sci .2017, 10, 1590-1599.
[10]
Ge, Z. H.; Zhang, B. P.; Chen, Y. X.; Yu, Z. X.; Liu, Y.; Li, J. F. Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem. Commun. 2011, 47, 12697-12699.
[11]
He, Y.; Day, T.; Zhang, T. S.; Liu, H. L.; Shi, X.; Chen, L. D.; Snyder, G. J. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 2014, 26, 3974-3978.
[12]
Liang, L. R.; Chen, G. M.; Guo, C. Y. Polypyrrole nanostructures and their thermoelectric performance. Mater. Chem. Front. 2017, 1, 380-386.
[13]
Liu, L. Y.; Sun, Y. H.; Li, W. B.; Zhang, J. J.; Huang, X.; Chen, Z. J.; Sun, Y. M.; Di, C. G.; Xu, W.; Zhu, D. B. Flexible unipolar thermoelectric devices based on patterned poly[Kx(Ni-ethylenetetrathiolate)] thin films. Mater. Chem. Front. 2017, 1, 2111-2116.
[14]
Wang, L. M.; Yao, Q.; Shi, W.; Qu, S. Y.; Chen, L. D. Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front. 2017, 1, 741-748.
[15]
Yang, T.; Cheng, T. X.; Zhou, G. D. Effects of Ag or Yb doping on thermoelectric properties of Ca3Co3.9Cu0.1O9-δ. Chem. J. Chin. Univ. 2017, 38, 335-340.
[16]
Caillat, T.; Carle, M.; Pierrat, P.; Scherrer, H.; Scherrer, S. Thermoelectric properties of (BixSb1-x)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids 1992, 53, 1121-1129.
[17]
Zhang, Q.; Chere, E. K.; Sun, J. Y.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. F. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv. Energy Mater. 2015, 5, 1500360.
[18]
Yan, X.; Poudel, B.; Ma, Y.; Liu, W. S.; Joshi, G.; Wang, H.; Lan, Y. C.; Wang, D. Z.; Chen, G.; Ren, Z. F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 2010, 10, 3373-3378.
[19]
Liu, W. S.; Zhang, Q. Y.; Lan, Y. C.; Chen, S.; Yan, X.; Zhang, Q.; Wang, H.; Wang, D. Z.; Chen, G.; Ren, Z. F. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater. 2011, 1, 577-587.
[20]
Soni, A.; Shen, Y. Q.; Yin, M.; Zhao, Y. Y.; Yu, L. G.; Hu, X.; Dong, Z. L.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. H. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 2012, 12, 4305-4310.
[21]
Hong, M.; Chasapis, T. C.; Chen, Z. G.; Yang, L.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. n-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719-4727.
[22]
Xu, B.; Feng, T. L.; Agne, M. T.; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem. 2017, 129, 3600-3605.
[23]
Xu, B.; Agne, M. T.; Feng, T. L.; Chasapis, T. C.; Ruan, X. L.; Zhou, Y. L.; Zheng, H. M.; Bahk, J. H.; Kanatzidis, M. G.; Snyder, G. J. et al. Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K). Adv. Mater. 2017, 29, 1605140
[24]
Zheng, G.; Su, X. L.; Li, X. R.; Liang, T.; Xie, H. Y.; She, X. Y.; Yan, Y. G.; Uher, C.; Kanatzidis, M. G.; Tang, X. F. Toward high-thermoelectric-performance large-size nanostructured BiSbTe alloys via optimization of sintering-temperature distribution. Adv. Energy Mater. 2016, 6, 1600595.
[25]
Chen, N.; Gascoin, F.; Snyder, G. J.; Müller, E.; Karpinski, G.; Stiewe, C. Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1-x. Appl. Phys. Lett. 2005, 87, 171903.
[26]
Mehta, R. J.; Zhang, Y. L.; Karthik, C.; Singh, B.; Siegel, R. W.; Borca-Tasciuc, T.; Ramanath, G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 2012, 11, 233-240.
[27]
Zheng, Y.; Luo, Y. B.; Du, C. F.; Zhu, B. B.; Liang, Q. H.; Hng, H. H.; Hippalgaonkar, K.; Xu, J. W.; Yan, Q. Y. Designing hybrid architectures for advanced thermoelectric materials. Mater. Chem. Front. 2017, 1, 2457-2473.
[28]
Zhang, G. Q.; Kirk, B.; Jauregui, L. A.; Yang, H. R.; Xu, X. F.; Chen, Y. P.; Wu, Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 2011, 12, 56-60.
[29]
Tang, Z.; Wang, Y.; Sun, K.; Kotov, N. A. Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires. Adv. Mater. 2005, 17, 358-363.
[30]
Bahk, J. H.; Shakouri, A. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors. Phys. Rev. B 2016, 93, 165209.
[31]
Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: The 3ω method. Rev. Sci. Instrum .1990, 61, 802-808.
[32]
Kwon, S.; Zheng, J. L.; Wingert, M. C.; Cui, S.; Chen, R. K. Unusually high and anisotropic thermal conductivity in amorphous silicon nanostructures. ACS Nano 2017, 11, 2470-2476.
[33]
Feser, J. P. Scalable routes to efficient thermoelectric materials. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 2010.
[34]
Zhang, Y. L.; Hapenciuc, C. L.; Castillo, E. E.; Borca-Tasciuc, T.; Mehta, R. J.; Karthik, C.; Ramanath, G. A microprobe technique for simultaneously measuring thermal conductivity and seebeck coefficient of thin films. Appl. Phys. Lett. 2010, 96, 062107.
File
12274_2019_2590_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2019
Revised: 19 November 2019
Accepted: 01 December 2019
Published: 18 December 2019
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

R. K. C. acknowledges grant # NSF(DMR-1508420). Y. W. thanks the support from the Herbert L. Stiles Professorship and ACRI Center Initiative from Iowa State University.

Return