Journal Home > Volume 13 , Issue 1

In this research, it reported a novel three-dimensional (3D) metallic hybrid system by introducing single-layer graphene (SLG) between silver nanoparticles (NPs) and silver nano-discs (NDs) arrays (Ag NPs/SLG/Ag NDs). By combining the plasmonic metallic nanostructures and the unique physical/chemical properties of graphene, Ag NPs/SLG/Ag NDs hybrid substrate was fabricated, and it exhibited extremely high surface-enhanced Raman scattering (SERS) performance. By tuning the diameter of Ag NDs, the SERS performance of Ag NPs/SLG/Ag NDs hybrid substrate has been systematically studied. The detection limit for rhodamine 6g (R6G) could reach the concentrations as low as 1 × 10-12 mol/L, and the average enhancement factor (EF) of the Ag NPs/SLG/Ag NDs substrate could reach 5.65 × 108. These advantages indicated that the Ag NPs/SLG/Ag NDs hybrid substrate could be regarded as a candidate for organic molecules detection under extremely low concentration. Besides, spatial Raman mapping of Ag NPs/SLG/Ag NDs with 2.5 μm diameter NDs showed the larger SERE signal existed around the rim of Ag NDs which was related to the localized surface plasmons. This phenomenon was contributed by a larger electromagnetic field which was tuned by Ag NPs and the edge of Ag NDs. This mechanism also has been confirmed by the electromagnetic simulation result.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatial Raman mapping investigation of SERS performance related to localized surface plasmons

Show Author's information Yansheng Liu1,2Feng Luo1( )
IMDEA Nanoscience, Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
School of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

Abstract

In this research, it reported a novel three-dimensional (3D) metallic hybrid system by introducing single-layer graphene (SLG) between silver nanoparticles (NPs) and silver nano-discs (NDs) arrays (Ag NPs/SLG/Ag NDs). By combining the plasmonic metallic nanostructures and the unique physical/chemical properties of graphene, Ag NPs/SLG/Ag NDs hybrid substrate was fabricated, and it exhibited extremely high surface-enhanced Raman scattering (SERS) performance. By tuning the diameter of Ag NDs, the SERS performance of Ag NPs/SLG/Ag NDs hybrid substrate has been systematically studied. The detection limit for rhodamine 6g (R6G) could reach the concentrations as low as 1 × 10-12 mol/L, and the average enhancement factor (EF) of the Ag NPs/SLG/Ag NDs substrate could reach 5.65 × 108. These advantages indicated that the Ag NPs/SLG/Ag NDs hybrid substrate could be regarded as a candidate for organic molecules detection under extremely low concentration. Besides, spatial Raman mapping of Ag NPs/SLG/Ag NDs with 2.5 μm diameter NDs showed the larger SERE signal existed around the rim of Ag NDs which was related to the localized surface plasmons. This phenomenon was contributed by a larger electromagnetic field which was tuned by Ag NPs and the edge of Ag NDs. This mechanism also has been confirmed by the electromagnetic simulation result.

Keywords: graphene, high performance, surface-enhanced Raman scattering (SERS), plasmon, mapping

References(66)

[1]
Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 2010, 4, 5617-5626.
[2]
Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA. 2012, 109, 9281-9286.
[3]
Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B: Chem. 2019, 285, 462-469.
[4]
Mosier-Boss, P. A. Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7, 142.
[5]
Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering. Small 2012, 8, 2548-2554.
[6]
Li, X. L.; Hu, H. L.; Li, D. H.; Shen, Z. X.; Xiong, Q. H.; Li, S. Z.; Fan, H. J. Ordered array of gold semishells on TiO2 spheres: An ultrasensitive and recyclable SERS substrate. ACS Appl. Mater. Interfaces 2012, 4, 2180-2185.
[7]
Le Ru, E. C.; Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 2012, 63, 65-87.
[8]
Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854-3864.
[9]
Ling, X.; Huang, S. X.; Deng, S. B.; Mao, N. N.; Kong, J.; Dresselhaus, M. S.; Zhang, J. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc. Chem. Res. 2015, 48, 1862-1870.
[10]
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.
[11]
Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.
[12]
Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf. Electrochem. 1977, 84, 1-20.
[13]
Xu, S. C.; Jiang, S. Z.; Wang, J. H.; Wei, J.; Yue, W. W.; Ma, Y. Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sens. Actuators B: Chem. 2016, 222, 1175-1183.
[14]
Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.
[15]
Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
[16]
Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553-561.
[17]
Yang, S. K.; Dai, X. M.; Stogin, B. B.; Wong, T. S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268-273.
[18]
Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X.; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843-4851.
[19]
Zhao, Y.; Yang, D.; Li, X. Y.; Liu, Y.; Hu, X.; Zhou, D. F.; Lu, Y. L. Toward highly sensitive surface-enhanced Raman scattering: The design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Nanoscale 2017, 9, 1087-1096.
[20]
Li, L.; Hutter, T.; Steiner, U.; Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 2013, 138, 4574-4578.
[21]
Lee, J.; Hua, B.; Park, S.; Ha, M.; Lee, Y.; Fan, Z. Y.; Ko, H. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 2014, 6, 616-623.
[22]
Rycenga, M.; Xia, X. H.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z. Y.; Xia, Y. N. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2011, 50, 5473-5477.
[23]
Xia, X. H.; Zeng, J.; McDearmon, B.; Zheng, Y. Q.; Li, Q. G.; Xia, Y. N. Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew. Chem., Int. Ed. 2011, 50, 12542-12546.
[24]
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229-1233.
[25]
Wang, P.; Liang, O. W.; Zhang, W.; Schroeder, T.; Xie, Y. H. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection. Adv. Mater. 2013, 25, 4918-4924.
[26]
Wang, P.; Xia, M.; Liang, O. W.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H. N.; Xie, Y. H. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem. 2015, 87, 10255-10261.
[27]
Palankar, R.; Medvedev, N.; Rong, A.; Delcea, M. Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics. ACS Nano 2013, 7, 4617-4628.
[28]
Abu Hatab, N. A.; Oran, J. M.; Sepaniak, M. J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2008, 2, 377-385.
[29]
Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Novoselov, K. S.; Grigorenko, A. N. Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray. J. Phys. Chem. C 2012, 116, 3882-3887.
[30]
Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923-1928.
[31]
Hao, Q. Z.; Wang, B.; Bossard, J. A.; Kiraly, B.; Zeng, Y.; Chiang, I. K.; Jensen, L.; Werner, D. H.; Huang, T. J. Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates. J. Phys. Chem. C 2012, 116, 7249-7254.
[32]
Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H.; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 2010, 22, 4136-4139.
[33]
Mu, C.; Zhang, J. P.; Xu, D. S. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 2010, 21, 015604.
[34]
Wang, P.; Zhang, W.; Liang, O. W.; Pantoja, M.; Katzer, J.; Schroeder, T.; Xie, Y. H. Giant optical response from graphene-plasmonic system. ACS Nano 2012, 6, 6244-6249.
[35]
Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576-1599.
[36]
Kodiyath, R.; Malak, S. T.; Combs, Z. A.; Koenig, T.; Mahmoud, M. A.; El-Sayed, M. A.; Tsukruk, V. V. Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J. Mater. Chem. A 2013, 1, 2777-2788.
[37]
Zhao, Y.; Zeng, W. C.; Tao, Z. C.; Xiong, P. H.; Qu, Y.; Zhu, Y. W. Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids. Chem. Commun. 2015, 51, 866-869.
[38]
Ko, H.; Tsukruk, V. V. Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. small 2008, 4, 1980-1984.
[39]
Sivashanmugan, K.; Liao, J. D.; Shao, P. L.; Haochih Liu, B.; Tseng, T. Y.; Chang, C. Y. Intense Raman scattering on hybrid Au/Ag nanoplatforms for the distinction of MMP-9-digested collagen type-I fiber detection. Biosens. Bioelectron. 2015, 72, 61-70.
[40]
Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K.; Luo, S. C. Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sens. Actuators B: Chem. 2015, 207, 430-436.
[41]
Liu, A. P.; Xu, T.; Tang, J.; Wu, H. P.; Zhao, T. Y.; Tang, W. H. Sandwich-structured Ag/graphene/Au hybrid for surface-enhanced Raman scattering. Electrochim. Acta 2014, 119, 43-48.
[42]
Han, Y.; Lupitskyy, R.; Chou, T. M.; Stafford, C. M.; Du, H.; Sukhishvili, S. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: A quantitative correlation. Anal. Chem. 2011, 83, 5873-5880.
[43]
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
[44]
Thrall, E. S.; Crowther, A. C.; Yu, Z. H.; Brus, L. E. R6G on graphene: High Raman detection sensitivity, yet decreased Raman cross-section. Nano Lett. 2012, 12, 1571-1577.
[45]
Lu, R. T.; Konzelmann, A.; Xu, F.; Gong, Y. P.; Liu, J. W.; Liu, Q. F.; Xin, M.; Hui, R. Q.; Wu, J. Z. High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates. Carbon 2015, 86, 78-85.
[46]
Du, Y. X.; Zhao, Y.; Qu, Y.; Chen, C. H.; Chen, C. M.; Chuang, C. H.; Zhu, Y. W. Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C 2014, 2, 4683-4691.
[47]
Liang, X.; Liang, B. L.; Pan, Z. H.; Lang, X. F.; Zhang, Y. G.; Wang, G. S.; Yin, P. G.; Guo, L. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale 2015, 7, 20188-20196.
[48]
Zhao, Y.; Li, X. Y.; Du, Y. X.; Chen, G. X.; Qu, Y.; Jiang, J.; Zhu, Y. W. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: Toward highly sensitive SERS substrates. Nanoscale 2014, 6, 11112-11120.
[49]
Duan, B.; Zhou, J. J.; Fang, Z.; Wang, C. X.; Wang, X. J.; Hemond, H. F.; Chan-Park, M. B.; Duan, H. W. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Nanoscale 2015, 7, 12606-12613.
[50]
Le Ru, E. C.; Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier: Oxford, 2009.
[51]
Liu, L.; Shao, M. W.; Cheng, L.; Zhuo, S. J.; Que, R. H.; Lee, S. T. Edge-enhanced Raman scattering effect from Au deposited nanoedge array. Appl. Phys. Lett. 2011, 98, 073114.
[52]
Kudelski, A.; Pettinger, B. Fluctuations of surface-enhanced Raman spectra of CO adsorbed on gold substrates. Chem. Phys. Lett. 2004, 383, 76-79.
[53]
Li, C. H.; Zhang, C.; Xu, S. C.; Huo, Y. Y.; Jiang, S. Z.; Yang, C.; Li, Z.; Zhao, X. F.; Zhang, S. Z.; Man, B. Y. Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sens. Actuators B: Chem. 2018, 263, 408-416.
[54]
Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114-3122.
[55]
Lee, K. J.; Kim, D.; Jang, B. C.; Kim, D. J.; Park, H.; Jung, D. Y.; Hong, W.; Kim, T. K.; Choi, Y. K.; Choi, S. Y. Multilayer graphene with a rippled structure as a spacer for improving plasmonic coupling. Adv. Funct. Mater. 2016, 26, 5093-5101.
[56]
Cançado, L. G.; Jorio, A.; Pimenta, M. Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 2007, 76, 064304.
[57]
Lee, J.; Shim, S.; Kim, B.; Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chemistry 2011, 17, 2381-2387.
[58]
Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.
[59]
Das, A.; Chakraborty, B.; Sood, A. K. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579-584.
[60]
Hildebrandt, P.; Stockburger, M. Surface enhanced resonance Raman study on fluorescein dyes. J. Raman Spectrosc. 1986, 17, 55-58.
[61]
Wang, L. L.; Roitberg, A.; Meuse, C.; Gaigalas, A. K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectroch. Acta Part A: Mol. Biomol. Spectrosc. 2001, 57, 1781-1791.
[62]
Zhang, D. M.; Vangala, K.; Jiang, D. P.; Zou, S. G.; Pechan, T. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein. Appl. Spectrosc. 2010, 64, 1078-1085.
[63]
Dou, X.; Chung, P. Y.; Jiang, P.; Dai, J. L. Surface plasmon resonance and surface-enhanced Raman scattering sensing enabled by digital versatile discs. Appl. Phys. Lett. 2012, 100, 041116.
[64]
Maurer, T.; Nicolas, R.; Lévêque, G.; Subramanian, P.; Proust, J.; Béal, J.; Schuermans, S.; Vilcot, J. P.; Herro, Z.; Kazan, M. et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 2014, 9, 507-512.
[65]
Zhu, J. F.; Liu, Q. H.; Lin, T. Manipulating light absorption of graphene using plasmonic nanoparticles. Nanoscale 2013, 5, 7785-7789.
[66]
Wang, D. Q.; Bourgeois, M. R.; Lee, W. K.; Li, R.; Trivedi, D.; Knudson, M. P.; Wang, W. J.; Schatz, G. C.; Odom, T. W. Stretchable nanolasing from hybrid quadrupole plasmons. Nano Lett. 2018, 18, 4549-4555.
File
12274_2019_2586_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2019
Revised: 25 November 2019
Accepted: 28 November 2019
Published: 18 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work has been supported by China Scholarship Council, the National Natural Science Foundation of China (Nos. 201606180013 and 51520105003) and MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD (No. MAT2017-89868-P).

Return