Journal Home > Volume 13 , Issue 5

We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1-xSex)3 nanowires synthesized by chemical vapor deposition (CVD). It is found that the population of bulk carriers can be suppressed effectively with increasing the Se concentration x. In Bi2(Te1-xSex)3 nanowires with x = 25% ± 5%, the ambipolar surface conduction associated with tuning the Fermi energy across the Dirac point of topological surface states is induced by applying a back-gate voltage. Importantly, we find that while the magneto-resistance (MR) follows the weak antilocalization (WAL) behavior when the Fermi level is tuned away from the Dirac point, MR is enhanced in magnitude and turns more linear in the whole magnetic field range (between ±9 T) near the Dirac point. The observation of the enhanced linear magneto-resistance (LMR) and crossover from WAL to LMR, near the Dirac point provides a deeper insight into understanding the nature of topological insulator’s surface transport and the relation between these two widely observed magneto-transport phenomena.


menu
Abstract
Full text
Outline
About this article

Enhanced linear magneto-resistance near the Dirac point in topological insulator Bi2(Te1-xSex)3 nanowires

Show Author's information LingNan Wei1,2ZhenHua Wang1,2( )ZhiDong Zhang1,2Chieh-Wen Liu3Xuan P. A. Gao3( )
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA

Abstract

We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1-xSex)3 nanowires synthesized by chemical vapor deposition (CVD). It is found that the population of bulk carriers can be suppressed effectively with increasing the Se concentration x. In Bi2(Te1-xSex)3 nanowires with x = 25% ± 5%, the ambipolar surface conduction associated with tuning the Fermi energy across the Dirac point of topological surface states is induced by applying a back-gate voltage. Importantly, we find that while the magneto-resistance (MR) follows the weak antilocalization (WAL) behavior when the Fermi level is tuned away from the Dirac point, MR is enhanced in magnitude and turns more linear in the whole magnetic field range (between ±9 T) near the Dirac point. The observation of the enhanced linear magneto-resistance (LMR) and crossover from WAL to LMR, near the Dirac point provides a deeper insight into understanding the nature of topological insulator’s surface transport and the relation between these two widely observed magneto-transport phenomena.

Keywords: bismuth telluride, nanowire, topological insulator, bismuth selenide, ambipolar conduction, linear magneto-resistance, weak anti-localization

References(74)

[1]
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
[2]
Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.
[3]
Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57-61.
[4]
Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.
[5]
Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.
[6]
Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241-245.
[7]
Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18-27.
[8]
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.
[9]
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
[10]
Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.
[11]
Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20-28.
[12]
Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. 2019, 119, 9136-9152.
[13]
Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510-517.
[14]
Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330-345.
[15]
Patel, S. R.; Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 2019, 37, 1007-1012.
[16]
Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547-552.
[17]
Du, J.; Liang, D.; Tang, H.; Gao, X. P. A. InAs nanowire transistors as gas sensor and the response mechanism. Nano Lett. 2009, 9, 4348-4351.
[18]
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.
[19]
Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.
[20]
Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 2009, 460, 1101-1105.
[21]
Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194-198.
[22]
Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106-1109.
[23]
Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.
[24]
Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.
[25]
Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970-974.
[26]
Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178-181.
[27]
Chen, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H. H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 2010, 329, 659-662.
[28]
Zhang, T.; Cheng, P.; Chen, X.; Jia, J. F.; Ma, X. C.; He, K.; Wang, L. L.; Zhang, H. J.; Dai, X.; Fang, Z. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 2009, 103, 266803.
[29]
Alpichshev, Z.; Analytis, J. G.; Chu, J. H.; Fisher, I. R.; Chen, Y. L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 2010, 104, 016401.
[30]
Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Transmission of topological surface states through surface barriers. Nature 2010, 466, 343-346.
[31]
Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 2010, 82, 081305(R).
[32]
Checkelsky, J. G.; Hor, Y. S.; Cava, R. J.; Ong, N. P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 2011, 106, 196801.
[33]
Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S. K. et al. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705-709.
[34]
Hong, S. S.; Cha, J. J.; Kong, D. S.; Cui, Y. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat. Commun. 2012, 3, 757.
[35]
Lee, C. H.; He, R.; Wang, Z. H.; Qiu, R. L. J.; Kumar, A.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Sankaran, R. M. et al. Metal-insulator transition in variably doped (Bi1-xSbx)2Se3 nanosheets. Nanoscale 2013, 5, 4337-4343.
[36]
Analytis, J. G.; McDonald, R. D.; Riggs, S. C.; Chu, J. H.; Boebinger, G. S.; Fisher, I. R. Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 2010, 6, 960-964.
[37]
Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821-824.
[38]
Taskin, A. A.; Ren, Z.; Sasaki, S.; Segawa, K.; Ando, Y. Observation of dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 2011, 107, 016801.
[39]
Xiong, J.; Khoo, Y.; Jia, S.; Cava, R. J.; Ong, N. P. Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi2Te2Se by liquid gating. Phys. Rev. B 2013, 88, 035128.
[40]
Pan, Y.; Nikitin, A. M.; Wu, D.; Huang, Y. K.; Puri, A.; Wiedmann, S.; Zeitler, U.; Frantzeskakis, E.; van Heumen, E.; Golden, M. S. et al. Quantum oscillations of the topological surface states in low carrier concentration crystals of Bi2-xSbxTe3-ySey. Solid State Commun. 2016, 227, 13-18.
[41]
Akiyama, R.; Sumida, K.; Ichinokura, S.; Nakanishi, R.; Kimura, A.; Kokh, K. A.; Tereshchenko, O. E.; Hasegawa, S. Shubnikov-de Haas oscillations in p and n-type topological insulator (BixSb1-x)2Te3. J. Phys.: Condens. Matter 2018, 30, 265001.
[42]
Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.
[43]
Lang, M. R.; He, L.; Xiu, F. X.; Yu, X. X.; Tang, J. S.; Wang, Y.; Kou, X. F.; Jiang, W. J.; Fedorov, A. V.; Wang, K. L. Revelation of topological surface states in Bi2Se3 thin films by in situ Al passivation. ACS Nano 2012, 6, 295-302.
[44]
Xiu, F. X.; He, L.; Wang, Y.; Cheng, L. N.; Chang, L. T.; Lang, M. R.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216-221.
[45]
Wang, Y.; Xiu, F. X.; Cheng, L. N.; He, L.; Lang, M. R.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170-1175.
[46]
Liu, H. C.; Liu, S. G.; Yi, Y.; He, H. T.; Wang, J. N. Shubnikov-de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater. 2015, 2, 045002.
[47]
Huang, Y. C.; Lee, P. C.; Chien, C. H.; Chiu, F. Y.; Chen, Y. Y.; Harutyunyan, S. R. Magnetotransport properties of Sb2Te3 nanoflake. Phys. B: Condens. Matter 2014, 452, 108-112.
[48]
Chen, J.; Qin, H. J.; Yang, F.; Liu, J.; Guan, T.; Qu, F. M.; Zhang, G. H.; Shi, J. R.; Xie, X. C.; Yang, C. L. et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys. Rev. Lett. 2010, 105, 176602.
[49]
He, H. T.; Wang, G.; Zhang, T.; Sou, I. K.; Wong, G. K. L.; Wang, J. N. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 2011, 106, 166805.
[50]
Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B 2017, 95, 195113.
[51]
Cha, J. J.; Kong, D. S.; Hong, S. S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates. Nano Lett. 2012, 12, 1107-1111.
[52]
Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 2013, 7, 2126-2131.
[53]
Li, H.; Wang, H. W.; Li, Y.; Zhang, H. C.; Zhang, S.; Pan, X. C.; Jia, B.; Song, F. Q.; Wang, J. N. Quantitative analysis of weak antilocalization effect of topological surface states in topological insulator BiSbTeSe2. Nano Lett. 2019, 19, 2450-2455.
[54]
Tu, N. H.; Tanabe, Y.; Satake, Y.; Huynh, K. K.; Le, P. H.; Matsushita, S. Y.; Tanigaki, K. Large-area and transferred high-quality three-dimensional topological insulator Bi2-xSbxTe3-ySey ultrathin film by catalyst-free physical vapor deposition. Nano Lett. 2017, 17, 2354-2360.
[55]
Bao, L. H.; He, L.; Meyer, N.; Kou, X. F.; Zhang, P.; Chen, Z. G.; Fedorov, A. V.; Zou, J.; Riedemann, T. M.; Lograsso, T. A. et al. Weak anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep. 2012, 2, 726.
[56]
Liu, Y. J.; Tang, M.; Meng, M. M.; Wang, M. Z.; Wu, J. X.; Yin, J. B.; Zhou, Y. B.; Guo, Y. F.; Tan, C. W.; Dang, W. H. et al. Epitaxial growth of ternary topological insulator Bi2Te2Se 2D crystals on mica. Small 2017, 13, 1603572.
[57]
Tang, H.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 2011, 5, 7510-7516.
[58]
Gao, B. F.; Gehring, P.; Burghard, M.; Kern, K. Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett. 2012, 100, 212402.
[59]
Wang, X. L.; Du, Y.; Dou, S. X.; Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 2012, 108, 266806.
[60]
He, H. T.; Li, B. K.; Liu, H. C.; Guo, X.; Wang, Z. Y.; Xie, M. H.; Wang, J. N. High-field linear magneto-resistance in topological insulator Bi2Se3 thin films. Appl. Phys. Lett. 2012, 100, 032105.
[61]
Zhang, S. X.; McDonald, R. D.; Shekhter, A.; Bi, Z. X.; Li, Y.; Jia, Q. X.; Picraux, S. T. Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 2012, 101, 202403.
[62]
Yue, Z. J.; Wang, X. L.; Dou, S. X. Angular-dependences of giant in-plane and interlayer magnetoresistances in Bi2Te3 bulk single crystals. Appl. Phys. Lett. 2012, 101, 152107.
[63]
Yue, Z. J.; Wang, X. L.; Du, Y.; Mahboobeh, S. M.; Yun, F. F.; Cheng, Z. X.; Dou, S. X. Giant and anisotropic magnetoresistances in p-type Bi-doped Sb2Te3 bulk single crystals. Europhys. Lett. 2012, 100, 17014.
[64]
Wang, Z. H.; Yang, L.; Li, X. J.; Zhao, X. T.; Wang, H. L.; Zhang, Z. D.; Gao, X. P. A. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 2014, 14, 6510-6514.
[65]
Wang, Z. H.; Yang, L.; Zhao, X. T.; Zhang, Z. D.; Gao, X. P. A. Linear magnetoresistance versus weak antilocalization effects in Bi2Te3. Nano Res. 2015, 8, 2963-2969.
[66]
Huang, S. M.; Yu, S. H.; Chou, M. The linear magnetoresistance from surface state of the Sb2SeTe2 topological insulator. J. Appl. Phys. 2016, 119, 245110.
[67]
Wei, F.; Liu, C. W.; Li, D.; Wang, C. Y.; Zhang, H. R.; Sun, J. R.; Gao, X. P. A.; Ma, S.; Zhang, Z. D. Broken mirror symmetry tuned topological transport in PbTe/SnTe heterostructures. Phys. Rev. B 2018, 98, 161301(R).
[68]
Li, M. Z.; Wang, Z. H.; Yang, L.; Gao, X. P. A.; Zhang, Z. D. From linear magnetoresistance to parabolic magnetoresistance in Cu and Cr-doped topological insulator Bi2Se3 films. J. Phys. Chem. Solids 2019, 128, 331-336.
[69]
Amaladass, E. P.; Devidas, T. R.; Sharma, S.; Sundar, C. S.; Mani, A.; Bharathi, A. Magneto-transport behaviour of Bi2Se3-xTex: Role of disorder. J. Phy.: Condens. Matter 2016, 28, 075003.
[70]
Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 1980, 63, 707-710.
[71]
Steinberg, H.; Laloë, J. B.; Fatemi, V.; Moodera, J. S.; Jarillo-Herrero, P. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B 2011, 84, 233101.
[72]
Tian, J. F.; Chang, C. Z.; Cao, H. L.; He, K.; Ma, X. C.; Xue, Q. K.; Chen, Y. P. Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction. Sci. Rep. 2014, 4, 4859.
[73]
Abrikosov, A. A. Quantum linear magnetoresistance. Europhys. Lett. 2000, 49, 789-793.
[74]
Parish, M. M.; Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 2003, 426, 162-165.
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 September 2019
Revised: 19 November 2019
Accepted: 24 November 2019
Published: 09 December 2019
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971220) and the National Basic Research Program of China (No. 2017YFA0206302). X. P. A. G. thanks the National Science Foundation for its financial support under Award DMR-1607631.

Return