Journal Home > Volume 13 , Issue 1

Electrochemical water splitting (EWS) is a highly clean and efficient method for high-purity hydrogen production. Unfortunately, EWS suffers from the sluggish and complex oxygen evolution reaction (OER) kinetics at anode. At present, the efficient, stable, and low-cost non-precious metal based OER electrocatalyst is still a great and long-term challenge for the future industrial application of EWS technology. Herein, we develop a simple and fast approach for gram-scale synthesis of flower-like cobalt-based layered double hydroxides nanosheet aggregates by ultrasonic synthesis, which show outstanding electrocatalytic performance for the oxygen evolution reaction in alkaline media, such as preeminent stability, small overpotential of 300 mV at 10 mA·cm-2 and small Tafel slope of 110 mV·dec-1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction

Show Author's information Tian-Jiao Wang1,§Xiaoyang Liu1,§Ying Li2Fumin Li2Ziwei Deng1( )Yu Chen1( )
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
Second address, Department, University, City and Postcode, Country School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China

§ Tian-Jiao Wang and Xiaoyang Liu contributed equally to this work.

Abstract

Electrochemical water splitting (EWS) is a highly clean and efficient method for high-purity hydrogen production. Unfortunately, EWS suffers from the sluggish and complex oxygen evolution reaction (OER) kinetics at anode. At present, the efficient, stable, and low-cost non-precious metal based OER electrocatalyst is still a great and long-term challenge for the future industrial application of EWS technology. Herein, we develop a simple and fast approach for gram-scale synthesis of flower-like cobalt-based layered double hydroxides nanosheet aggregates by ultrasonic synthesis, which show outstanding electrocatalytic performance for the oxygen evolution reaction in alkaline media, such as preeminent stability, small overpotential of 300 mV at 10 mA·cm-2 and small Tafel slope of 110 mV·dec-1.

Keywords: layered double hydroxides, oxygen evolution reaction, gram-scale synthesis, electrochemical water splitting, nanosheet aggregates

References(73)

[1]
Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.
[2]
Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684-692.
[3]
Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923-4928.
[4]
Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.
[5]
Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236-2241.
[6]
Wu, J. C.; Guo, Y. Q.; Liu, H. F.; Zhao, J. Y.; Zhou, H. D.; Chu, W. S.; Wu, C. Z. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res. 2019, 12, 2296-2301.
[7]
Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.
[8]
Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311-22319.
[9]
Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W. et al. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 2018, 8, 3803-3811.
[10]
Moon, G. H.; Yu, M. Q.; Chan, C. K.; Tüysüz, H. Highly active cobalt-based electrocatalysts with facile incorporation of dopants for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 3491-3495.
[11]
Cao, J. H.; Lei, C. J.; Yang, J.; Cheng, X. D.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Hou, Y.; Ostrikov, K. An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 18877-18883.
[12]
Xu, S. C.; Lv, C. C.; He, T.; Huang, Z. P.; Zhang, C. Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 7526-7532.
[13]
Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu, Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070-22076.
[14]
Shen, Y.; Guo, S. G.; Du, F.; Yuan, X. B.; Zhang, Y. T.; Hu, J. Q.; Shen, Q.; Luo, W. J.; Alsaedi, A.; Hayat, T. et al. Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale 2019, 11, 11765-11773.
[15]
Alia, S. M.; Shulda, S.; Ngo, C.; Pylypenko, S.; Pivovar, B. S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal. 2018, 8, 2111-2120.
[16]
Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.
[17]
Zhang, Q.; Kusada, K.; Wu, D. S.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Honma, T. et al. Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chem. Sci. 2019, 10, 5133-5137.
[18]
Paoli, E. A.; Masini, F.; Frydendal, R.; Deiana, D.; Schlaup, C.; Malizia, M.; Hansen, T. W.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 2015, 6, 190-196.
[19]
Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-313.
[20]
Zhao, Y.; Bai, J.; Wu, X. R.; Chen, P.; Jin, P. J.; Yao, H. C.; Chen, Y. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. J. Mater. Chem. A 2019, 7, 16437-16446.
[21]
Bai, J.; Han, S. H.; Peng, R. L.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Ultrathin rhodium oxide nanosheet nanoassemblies: Synthesis, morphological stability, and electrocatalytic application. ACS Appl. Mater. Interfaces 2017, 9, 17195-17200.
[22]
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
[23]
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136-157.
[24]
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.
[25]
You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571-1580.
[26]
Fang, M.; Dong, G. F.; Wei, R. J.; Ho, J. C. Hierarchical nanostructures: Design for sustainable water splitting. Adv. Energy Mater. 2017, 7, 1700559.
[27]
Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587-17603.
[28]
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.
[29]
Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.
[30]
Chen, C. F.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Tian, C. G.; Fu, H. G. Trapping [PMo12O40]3- clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 2018, 9, 4746-4755.
[31]
Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605-1611.
[32]
Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[33]
Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.
[34]
Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.
[35]
Yu, J. F.; Wang, Q.; O’Hare, D.; Sun, L. Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950-5974.
[36]
Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-7066.
[37]
Patel, R.; Park, J. T.; Patel, M.; Dash, J. K.; Gowd, E. B.; Karpoormath, R.; Mishra, A.; Kwak, J.; Kim, J. H. Transition-metal-based layered double hydroxides tailored for energy conversion and storage. J. Mater. Chem. A 2018, 6, 12-29.
[38]
Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.
[39]
Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.
[40]
Liu, Z. J.; Dong, C. L.; Huang, Y. C.; Cen, J. J.; Yang, H. T.; Chen, X. B.; Tong, X.; Su, D.; Wang, Y. Y.; Wang, S. Y. Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: An efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 14483-14488.
[41]
Zhou, P.; He, J. Y.; Zou, Y. Q.; Wang, Y. Y.; Xie, C.; Chen, R.; Zang, S. Q.; Wang, S. Y. Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Sci. China Chem. 2019, 62, 1365-1370.
[42]
Chen, W. X.; Zhang, Y. W.; Huang, R.; Zhou, Y. M.; Wu, Y. J.; Hu, Y. J.; Ostrikov, K. Ni-Co hydroxide nanosheets on plasma-reduced Co-based metal-organic nanocages for electrocatalytic water oxidation. J. Mater. Chem. A 2019, 7, 4950-4959.
[43]
Chen, L. Y.; Guo, Y. T.; Wang, H. F.; Gu, Z. Z.; Zhang, Y. Y.; Li, X. Z.; Wang, H.; Duan, C. Y. Imidazolate-mediated assembled structures of Co-LDH sheets for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 4636-4641.
[44]
Xu, X.; Zhong, Z.; Yan, X. M.; Kang, L. T.; Yao, J. N. Cobalt layered double hydroxide nanosheets synthesized in water-methanol solution as oxygen evolution electrocatalysts. J. Mater. Chem. A 2018, 6, 5999-6006.
[45]
Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 2018, 28, 1803272.
[46]
Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778-11781.
[47]
Zhou, L. X.; Guo, M. C.; Li, Y.; Gu, Q.; Zhang, W. Q.; Li, C.; Xie, F. Y.; Lin, D. M.; Zheng, Q. J. One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction. Chem. Commun. 2019, 55, 4218-4221.
[48]
Rajeshkhanna, G.; Singh, T. I.; Kim, N. H.; Lee, J. H. Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni- and Co-layered double hydroxides for overall water-splitting. ACS Appl. Mater. Interfaces 2018, 10, 42453-42468.
[49]
Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250-13258.
[50]
Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867-5871.
[51]
Yang, Q.; Li, T.; Lu, Z. Y.; Sun, X. M.; Liu, J. F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 2014, 6, 11789-11794.
[52]
Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.
[53]
Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590-5595.
[54]
He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897-3900.
[55]
Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770-11775.
[56]
Raj, S.; Anantharaj, S.; Kundu, S.; Roy, P. In situ Mn-doping-promoted conversion of Co(OH)2 to Co3O4 as an active electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 9690-9698.
[57]
Wang, K.; Liu, C. H.; Wang, W. C.; Mitsuzaki, N.; Chen, Z. D. Synthesis and electrochemical performance of nickel-cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. J. Mater. Sci. Mater. Electron. 2019, 30, 4144-4151.
[58]
Tong, Y.; Yu, X. W.; Wang, H. Y.; Yao, B. W.; Li, C.; Shi, G. Q. Trace level Co-N doped graphite foams as high-performance self-standing electrocatalytic electrodes for hydrogen and oxygen evolution. ACS Catal. 2018, 8, 4637-4644.
[59]
Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Tan, D. X.; Shi, J. B.; Zhang, F. Y.; Liu, L. F.; Su, Z. Z.; Han, B. X.; Zheng, L. R. et al. One-step synthesis of ultrathin α-Co(OH)2 nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. Chem. Commun. 2018, 54, 4045-4048.
[60]
Yuan, X. T.; Wang, X.; Riaz, M. S.; Dong, C. L.; Zhang, Z.; Huang, F. Q. Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catal. Sci. Technol. 2018, 8, 2427-2433.
[61]
Malik, B.; Anantharaj, S.; Karthick, K.; Pattanayak, D. K.; Kundu, S. Magnetic copt nanoparticle-decorated ultrathin Co(OH)2 nanosheets: An efficient bi-functional water splitting catalyst. Catal. Sci. Technol. 2017, 7, 2486-2497.
[62]
Liu, H.; Ma, F. X.; Xu, C. Y.; Yang, L.; Du, Y.; Wang, P. P.; Yang, S.; Zhen, L. Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 11634-11641.
[63]
Shi, Y. M.; Wang, Y. T.; Yu, Y. F.; Niu, Z. Q.; Zhang, B. N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. J. Mater. Chem. A 2017, 5, 8897-8902.
[64]
Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421-1427.
[65]
Sun, S. S.; Lv, C. D.; Hong, W. Z.; Zhou, X.; Wu, F. G.; Chen, G. Dual tuning of composition and nanostructure of hierarchical hollow nanopolyhedra assembled by NiCo-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2019, 2, 312-319.
[66]
Liu, Y. Q.; Zhang, M.; Hu, D.; Li, R. Q.; Hu, K.; Yan, K. Ar plasma-exfoliated ultrathin NiCo-layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl. Energy Mater. 2019, 2, 1162-1168.
[67]
Zhang, T.; Hang, L. F.; Sun, Y. Q.; Men, D. D.; Li, X. Y.; Wen, L. L.; Lyu, X. J.; Li, Y. Hierarchical hetero-Ni3Se4@NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horiz. 2019, 4, 1132-1138.
[68]
Morales, D. M.; Barwe, S.; Vasile, E.; Andronescu, C.; Schuhmann, W. Enhancing electrocatalytic activity through liquid-phase exfoliation of NiFe layered double hydroxide intercalated with metal phthalocyanines in the presence of graphene. ChemPhysChem, in press, .
[69]
Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118-18125.
[70]
Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater. 2017, 29, 1701687.
[71]
Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913-1920.
[72]
Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904.
[73]
Zhang, J. F.; Hu, Y. C.; Liu, D. L.; Yu, Y.; Zhang, B. Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 2017, 4, 1600343.
File
12274_2019_2575_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 August 2019
Revised: 15 November 2019
Accepted: 21 November 2019
Published: 09 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This research was sponsored by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM5093), the Fundamental Research Funds for the Central Universities (Nos. GK201702009 and GK201901002), and 111 Project (No. B14041).

Return