Journal Home > Volume 13 , Issue 1

Faster response benefits the high-performance of magnetic material in various live applications. Hence, enhancing response speed toward the applied field via engineering advantages in structures is highly desired. In this paper, the precise synthesis of Co nanochain with the tunable length-diameter ratio is realized via a magnetic-field-guided assembly approach. The Co nanochain exhibits enhanced microwave absorption performance (near to -60 dB, layer thickness 2.2 mm) and broader effective absorption bandwidth (over 2/3 of total S, C, X, Ku bands). Furthermore, the simulated dynamic magnetic response reveals that the domain motion in 1D chain is faster than that in 0D nanoparticle, which is the determining factor of magnetic loss upgrade. Meanwhile, based on the controllable magnetic field experiment via in situ transmission electron microscopy, the association between magnetic response and microstructure is first present at the nanometer-level. The real and imaginary parts of relative complex permeability are determined by the domain migration confined inside Co nanochain and the magnetic flux field surrounded outside Co nanochain, respectively. Importantly, these findings can be extended to the novel design of microwave absorbers and promising candidates of magnetic carriers based on 1D structure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber

Show Author's information Wenbin YouKe PeiLiting YangXiao LiXiaofeng ShiXuefeng YuHuiqiao GuoRenchao Che( )
Laboratory of Advanced Materials, Department of Materials Science and Collaborative, Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, 220 Handan Road, Shanghai 200433, China

Abstract

Faster response benefits the high-performance of magnetic material in various live applications. Hence, enhancing response speed toward the applied field via engineering advantages in structures is highly desired. In this paper, the precise synthesis of Co nanochain with the tunable length-diameter ratio is realized via a magnetic-field-guided assembly approach. The Co nanochain exhibits enhanced microwave absorption performance (near to -60 dB, layer thickness 2.2 mm) and broader effective absorption bandwidth (over 2/3 of total S, C, X, Ku bands). Furthermore, the simulated dynamic magnetic response reveals that the domain motion in 1D chain is faster than that in 0D nanoparticle, which is the determining factor of magnetic loss upgrade. Meanwhile, based on the controllable magnetic field experiment via in situ transmission electron microscopy, the association between magnetic response and microstructure is first present at the nanometer-level. The real and imaginary parts of relative complex permeability are determined by the domain migration confined inside Co nanochain and the magnetic flux field surrounded outside Co nanochain, respectively. Importantly, these findings can be extended to the novel design of microwave absorbers and promising candidates of magnetic carriers based on 1D structure.

Keywords: microwave absorption, magnetic materials, in situ transmission electron microscopy (TEM), cobalt nanochain, dynamic response

References(48)

[1]
Wan, L.; Song, H. Y.; Chen, X.; Zhang, Y.; Yue, Q.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Deng, Y. H. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv. Mater. 2018, 30, 1707515.
[2]
Kralj, S.; Makovec, D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 2015, 9, 9700-9707.
[3]
Majetich, S. A.; Wen, T.; Booth, R. A. Functional magnetic nanoparticle assemblies: Formation, collective behavior, and future directions. ACS Nano 2011, 5, 6081-6084.
[4]
Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug. Deliv. Rev. 2011, 63, 789-808.
[5]
Yang, Y.; Guo, L.; Lopez, G. P.; Yellen, B. B. Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids. ACS Nano 2013, 7, 2705-2716.
[6]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949-6985.
[7]
Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222-1244.
[8]
Liu, J.; Cao, M. S.; Luo, Q.; Shi, H. L.; Wang, W. Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615-22622.
[9]
Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614-7621.
[10]
Zeng, Q.; Xiong, X. H.; Chen, P.; Yu, Q.; Wang, Q.; Wang, R. C.; Chu, H. R. Air@rGO€Fe3O4 microspheres with spongy shells: Self-assembly and microwave absorption performance. J. Mater. Chem. C 2016, 4, 10518-10528.
[11]
Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736-1743.
[12]
Abula, X.; Sadeh, B.; Aman, M.; Wubulikasimu, A.; Liu, J. Solvothermal synthesis and characterization of flower-like Co magnetic powder. Chin. J. Inorg. Chem. 2012, 28, 1403-1408.
[13]
Chen, H. Y.; Xu, C. J.; Chen, C.; Zhao, G. Z.; Liu, Y. Q. Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties. Mater. Res. Bull. 2012, 47, 1839-1844.
[14]
Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018-2025.
[15]
Tong, G. X.; Liu, Y.; Cui, T. T.; Li, Y. N.; Zhao, Y. T.; Guan, J. G. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl. Phys. Lett. 2016, 108, 072905.
[16]
Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600-1630.
[17]
Dušak, P.; Mertelj, A.; Kralj, S.; Makovec, D. Controlled heteroaggregation of two types of nanoparticles in an aqueous suspension. J. Colloid Interface Sci. 2015, 438, 235-243.
[18]
Lin, Y.; Xu, L.; Jiang, Z. Y.; Li, H. L.; Xie, Z. X.; Zheng, L. S. Facile synthesis of (Ni,Co)@(Ni,Co)xFe3-xO4 core@shell chain structures and (Ni,Co)@(Ni,Co)xFe3-xO4/graphene composites with enhanced microwave absorption. RSC Adv. 2015, 5, 70849-70855.
[19]
Liang, C. Y.; Liu, C. Y.; Wang, H.; Wu, L. N.; Jiang, Z. H.; Xu, Y. J.; Shen, B. Z.; Wang, Z. J. SiC-Fe3O4 dielectric-magnetic hybrid nanowires: Controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2014, 2, 16397-16402.
[20]
Yu, X. Z.; DeGrave, J. P.; Hara, Y.; Hara, T.; Jin, S.; Tokura, Y. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett. 2013, 13, 3755-3759.
[21]
Hu, J. M.; Yang, T. N.; Momeni, K.; Cheng, X. X.; Chen, L.; Lei, S. M.; Zhang, S. J.; Trolier-McKinstry, S.; Gopalan, V.; Carman, G. P. et al. Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 2016, 16, 2341-2348.
[22]
Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408-19415.
[23]
Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile Synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101-6109.
[24]
Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595-1607.
[25]
Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Commun. 2015, 6, 6628.
[26]
Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788-796.
[27]
Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.
[28]
Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.
[29]
She, W.; Bi, H.; Wen, Z. W.; Liu, Q. H.; Zhao, X. B.; Zhang, J.; Che, R. C. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces 2016, 8, 9782-9789.
[30]
Meng, F. B.; Wang, H. G.; Wei; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847-2861.
[31]
Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401-405.
[32]
Li, X.; Wang, L.; You, W. B.; Xing, L. S.; Yu, X. F.; Li, Y. S.; Che, R. C. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 2019, 11, 2694-2702.
[33]
Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.
[34]
Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426-1436.
[35]
Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949-6956.
[36]
Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A Voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.
[37]
Quan, B.; Liang, X. H.; Ji, G. B.; Zhang, Y. N.; Xu, G. Y.; Du, Y. W. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 2017, 9, 38814-38823.
[38]
Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.
[39]
Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980-990.
[40]
Liang, J. J.; Huang, Y.; Oh, J.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21, 3778-3784.
[41]
Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.
[42]
Li, J.; Xie, Y.; Lu, W.; Chou, T.-W. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 2018, 129, 76-84.
[43]
Wei, Z.; Chen, W. M.; Nai, J. W.; Yin, P. G.; Chen, C.; Guo, L. Selective synthesis of peapodlike Ni/Ni3S2 nanochains and nickel sulfide hollow chains and their magnetic properties. Adv. Funct. Mater. 2010, 20, 3678-3683.
[44]
Sun, J. C.; He, Z. D.; Dong, W. J.; Wu, W. H.; Tong, G. X. Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances. J. Alloys Compd. 2019, 782, 193-202.
[45]
Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.
[46]
Micheli, D.; Apollo, C.; Pastore, R.; Marchetti, M. X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 2010, 70, 400-409.
[47]
Hu, S.; Pei, K.; Wang, B. M.; Xia, W. X.; Yang, H. L.; Zhan, Q. F.; Li, X. G.; Liu, X. C.; Li, R. W. Direct imaging of cross-sectional magnetization reversal in an exchange-biased CoFeB/IrMn bilayer. Phys. Rev. B 2018, 97, 054422.
[48]
You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.
Video
12274_2019_2574_MOESM1_ESM.mp4
File
12274_2019_2574_MOESM2_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2019
Revised: 09 November 2019
Accepted: 20 November 2019
Published: 04 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (973 Project) (No. 2018YFA0209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Return